Description#
You are given an array prices
where prices[i]
is the price of a given stock on the ith
day.
Find the maximum profit you can achieve. You may complete at most two transactions.
Note: You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).
Example 1:
Input: prices = [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.
Example 2:
Input: prices = [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are engaging multiple transactions at the same time. You must sell before buying again.
Example 3:
Input: prices = [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.
Constraints:
1 <= prices.length <= 105
0 <= prices[i] <= 105
Solutions#
Solution 1: Dynamic Programming#
We define the following variables:
f1
represents the maximum profit after the first purchase of the stock;f2
represents the maximum profit after the first sale of the stock;f3
represents the maximum profit after the second purchase of the stock;f4
represents the maximum profit after the second sale of the stock.
During the traversal, we directly calculate f1
, f2
, f3
, f4
. We consider that buying and selling on the same day will result in a profit of $0$, which will not affect the answer.
Finally, return f4
.
The time complexity is $O(n)$, where $n$ is the length of the prices
array. The space complexity is $O(1)$.
1
2
3
4
5
6
7
8
9
10
| class Solution:
def maxProfit(self, prices: List[int]) -> int:
# 第一次买入,第一次卖出,第二次买入,第二次卖出
f1, f2, f3, f4 = -prices[0], 0, -prices[0], 0
for price in prices[1:]:
f1 = max(f1, -price)
f2 = max(f2, f1 + price)
f3 = max(f3, f2 - price)
f4 = max(f4, f3 + price)
return f4
|
1
2
3
4
5
6
7
8
9
10
11
12
13
| class Solution {
public int maxProfit(int[] prices) {
// 第一次买入,第一次卖出,第二次买入,第二次卖出
int f1 = -prices[0], f2 = 0, f3 = -prices[0], f4 = 0;
for (int i = 1; i < prices.length; ++i) {
f1 = Math.max(f1, -prices[i]);
f2 = Math.max(f2, f1 + prices[i]);
f3 = Math.max(f3, f2 - prices[i]);
f4 = Math.max(f4, f3 + prices[i]);
}
return f4;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
| class Solution {
public:
int maxProfit(vector<int>& prices) {
int f1 = -prices[0], f2 = 0, f3 = -prices[0], f4 = 0;
for (int i = 1; i < prices.size(); ++i) {
f1 = max(f1, -prices[i]);
f2 = max(f2, f1 + prices[i]);
f3 = max(f3, f2 - prices[i]);
f4 = max(f4, f3 + prices[i]);
}
return f4;
}
};
|
1
2
3
4
5
6
7
8
9
10
| func maxProfit(prices []int) int {
f1, f2, f3, f4 := -prices[0], 0, -prices[0], 0
for i := 1; i < len(prices); i++ {
f1 = max(f1, -prices[i])
f2 = max(f2, f1+prices[i])
f3 = max(f3, f2-prices[i])
f4 = max(f4, f3+prices[i])
}
return f4
}
|
1
2
3
4
5
6
7
8
9
10
| function maxProfit(prices: number[]): number {
let [f1, f2, f3, f4] = [-prices[0], 0, -prices[0], 0];
for (let i = 1; i < prices.length; ++i) {
f1 = Math.max(f1, -prices[i]);
f2 = Math.max(f2, f1 + prices[i]);
f3 = Math.max(f3, f2 - prices[i]);
f4 = Math.max(f4, f3 + prices[i]);
}
return f4;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| impl Solution {
#[allow(dead_code)]
pub fn max_profit(prices: Vec<i32>) -> i32 {
let mut f1 = -prices[0];
let mut f2 = 0;
let mut f3 = -prices[0];
let mut f4 = 0;
let n = prices.len();
for i in 1..n {
f1 = std::cmp::max(f1, -prices[i]);
f2 = std::cmp::max(f2, f1 + prices[i]);
f3 = std::cmp::max(f3, f2 - prices[i]);
f4 = std::cmp::max(f4, f3 + prices[i]);
}
f4
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
| public class Solution {
public int MaxProfit(int[] prices) {
int f1 = -prices[0], f2 = 0, f3 = -prices[0], f4 = 0;
for (int i = 1; i < prices.Length; ++i) {
f1 = Math.Max(f1, -prices[i]);
f2 = Math.Max(f2, f1 + prices[i]);
f3 = Math.Max(f3, f2 - prices[i]);
f4 = Math.Max(f4, f3 + prices[i]);
}
return f4;
}
}
|