309. Best Time to Buy and Sell Stock with Cooldown

Description

You are given an array prices where prices[i] is the price of a given stock on the ith day.

Find the maximum profit you can achieve. You may complete as many transactions as you like (i.e., buy one and sell one share of the stock multiple times) with the following restrictions:

  • After you sell your stock, you cannot buy stock on the next day (i.e., cooldown one day).

Note: You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).

 

Example 1:

Input: prices = [1,2,3,0,2]
Output: 3
Explanation: transactions = [buy, sell, cooldown, buy, sell]

Example 2:

Input: prices = [1]
Output: 0

 

Constraints:

  • 1 <= prices.length <= 5000
  • 0 <= prices[i] <= 1000

Solutions

We design a function $dfs(i, j)$, which represents the maximum profit that can be obtained starting from the $i$th day with state $j$. The values of $j$ are $0$ and $1$, respectively representing currently not holding a stock and holding a stock. The answer is $dfs(0, 0)$.

The execution logic of the function $dfs(i, j)$ is as follows:

If $i \geq n$, it means that there are no more stocks to trade, so return $0$;

Otherwise, we can choose not to trade, then $dfs(i, j) = dfs(i + 1, j)$. We can also trade stocks. If $j > 0$, it means that we currently hold a stock and can sell it, then $dfs(i, j) = prices[i] + dfs(i + 2, 0)$. If $j = 0$, it means that we currently do not hold a stock and can buy, then $dfs(i, j) = -prices[i] + dfs(i + 1, 1)$. Take the maximum value as the return value of the function $dfs(i, j)$.

The answer is $dfs(0, 0)$.

To avoid repeated calculations, we use the method of memoization search, and use an array $f$ to record the return value of $dfs(i, j)$. If $f[i][j]$ is not $-1$, it means that it has been calculated, and we can directly return $f[i][j]$.

The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n$ is the length of the array $prices$.

Python Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        @cache
        def dfs(i: int, j: int) -> int:
            if i >= len(prices):
                return 0
            ans = dfs(i + 1, j)
            if j:
                ans = max(ans, prices[i] + dfs(i + 2, 0))
            else:
                ans = max(ans, -prices[i] + dfs(i + 1, 1))
            return ans

        return dfs(0, 0)

Java Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
    private int[] prices;
    private Integer[][] f;

    public int maxProfit(int[] prices) {
        this.prices = prices;
        f = new Integer[prices.length][2];
        return dfs(0, 0);
    }

    private int dfs(int i, int j) {
        if (i >= prices.length) {
            return 0;
        }
        if (f[i][j] != null) {
            return f[i][j];
        }
        int ans = dfs(i + 1, j);
        if (j > 0) {
            ans = Math.max(ans, prices[i] + dfs(i + 2, 0));
        } else {
            ans = Math.max(ans, -prices[i] + dfs(i + 1, 1));
        }
        return f[i][j] = ans;
    }
}

C++ Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        int f[n][2];
        memset(f, -1, sizeof(f));
        function<int(int, int)> dfs = [&](int i, int j) {
            if (i >= n) {
                return 0;
            }
            if (f[i][j] != -1) {
                return f[i][j];
            }
            int ans = dfs(i + 1, j);
            if (j) {
                ans = max(ans, prices[i] + dfs(i + 2, 0));
            } else {
                ans = max(ans, -prices[i] + dfs(i + 1, 1));
            }
            return f[i][j] = ans;
        };
        return dfs(0, 0);
    }
};

Go Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
func maxProfit(prices []int) int {
	n := len(prices)
	f := make([][2]int, n)
	for i := range f {
		f[i] = [2]int{-1, -1}
	}
	var dfs func(i, j int) int
	dfs = func(i, j int) int {
		if i >= n {
			return 0
		}
		if f[i][j] != -1 {
			return f[i][j]
		}
		ans := dfs(i+1, j)
		if j > 0 {
			ans = max(ans, prices[i]+dfs(i+2, 0))
		} else {
			ans = max(ans, -prices[i]+dfs(i+1, 1))
		}
		f[i][j] = ans
		return ans
	}
	return dfs(0, 0)
}

TypeScript Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
function maxProfit(prices: number[]): number {
    const n = prices.length;
    const f: number[][] = Array.from({ length: n }, () => Array.from({ length: 2 }, () => -1));
    const dfs = (i: number, j: number): number => {
        if (i >= n) {
            return 0;
        }
        if (f[i][j] !== -1) {
            return f[i][j];
        }
        let ans = dfs(i + 1, j);
        if (j) {
            ans = Math.max(ans, prices[i] + dfs(i + 2, 0));
        } else {
            ans = Math.max(ans, -prices[i] + dfs(i + 1, 1));
        }
        return (f[i][j] = ans);
    };
    return dfs(0, 0);
}

Solution 2: Dynamic Programming

We can also use dynamic programming to solve this problem.

We define $f[i][j]$ to represent the maximum profit that can be obtained on the $i$th day with state $j$. The values of $j$ are $0$ and $1$, respectively representing currently not holding a stock and holding a stock. Initially, $f[0][0] = 0$, $f[0][1] = -prices[0]$.

When $i \geq 1$, if we currently do not hold a stock, then $f[i][0]$ can be obtained by transitioning from $f[i - 1][0]$ and $f[i - 1][1] + prices[i]$, i.e., $f[i][0] = \max(f[i - 1][0], f[i - 1][1] + prices[i])$. If we currently hold a stock, then $f[i][1]$ can be obtained by transitioning from $f[i - 1][1]$ and $f[i - 2][0] - prices[i]$, i.e., $f[i][1] = \max(f[i - 1][1], f[i - 2][0] - prices[i])$. The final answer is $f[n - 1][0]$.

The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n$ is the length of the array $prices$.

We notice that the transition of state $f[i][]$ is only related to $f[i - 1][]$ and $f[i - 2][0]$, so we can use three variables $f$, $f_0$, $f_1$ to replace the array $f$, optimizing the space complexity to $O(1)$.

Python Code
1
2
3
4
5
6
7
8
9
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        n = len(prices)
        f = [[0] * 2 for _ in range(n)]
        f[0][1] = -prices[0]
        for i in range(1, n):
            f[i][0] = max(f[i - 1][0], f[i - 1][1] + prices[i])
            f[i][1] = max(f[i - 1][1], f[i - 2][0] - prices[i])
        return f[n - 1][0]

Java Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
class Solution {
    public int maxProfit(int[] prices) {
        int n = prices.length;
        int[][] f = new int[n][2];
        f[0][1] = -prices[0];
        for (int i = 1; i < n; i++) {
            f[i][0] = Math.max(f[i - 1][0], f[i - 1][1] + prices[i]);
            f[i][1] = Math.max(f[i - 1][1], (i > 1 ? f[i - 2][0] : 0) - prices[i]);
        }
        return f[n - 1][0];
    }
}

C++ Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        int f[n][2];
        memset(f, 0, sizeof(f));
        f[0][1] = -prices[0];
        for (int i = 1; i < n; ++i) {
            f[i][0] = max(f[i - 1][0], f[i - 1][1] + prices[i]);
            f[i][1] = max(f[i - 1][1], (i > 1 ? f[i - 2][0] : 0) - prices[i]);
        }
        return f[n - 1][0];
    }
};

Go Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
func maxProfit(prices []int) int {
	n := len(prices)
	f := make([][2]int, n)
	f[0][1] = -prices[0]
	for i := 1; i < n; i++ {
		f[i][0] = max(f[i-1][0], f[i-1][1]+prices[i])
		if i > 1 {
			f[i][1] = max(f[i-1][1], f[i-2][0]-prices[i])
		} else {
			f[i][1] = max(f[i-1][1], -prices[i])
		}
	}
	return f[n-1][0]
}

TypeScript Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
function maxProfit(prices: number[]): number {
    const n = prices.length;
    const f: number[][] = Array.from({ length: n }, () => Array.from({ length: 2 }, () => 0));
    f[0][1] = -prices[0];
    for (let i = 1; i < n; ++i) {
        f[i][0] = Math.max(f[i - 1][0], f[i - 1][1] + prices[i]);
        f[i][1] = Math.max(f[i - 1][1], (i > 1 ? f[i - 2][0] : 0) - prices[i]);
    }
    return f[n - 1][0];
}

Solution 3

Python Code
1
2
3
4
5
6
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        f, f0, f1 = 0, 0, -prices[0]
        for x in prices[1:]:
            f, f0, f1 = f0, max(f0, f1 + x), max(f1, f - x)
        return f0

Java Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
class Solution {
    public int maxProfit(int[] prices) {
        int f = 0, f0 = 0, f1 = -prices[0];
        for (int i = 1; i < prices.length; ++i) {
            int g0 = Math.max(f0, f1 + prices[i]);
            f1 = Math.max(f1, f - prices[i]);
            f = f0;
            f0 = g0;
        }
        return f0;
    }
}

C++ Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int f = 0, f0 = 0, f1 = -prices[0];
        for (int i = 1; i < prices.size(); ++i) {
            int g0 = max(f0, f1 + prices[i]);
            f1 = max(f1, f - prices[i]);
            f = f0;
            f0 = g0;
        }
        return f0;
    }
};

Go Code
1
2
3
4
5
6
7
func maxProfit(prices []int) int {
	f, f0, f1 := 0, 0, -prices[0]
	for _, x := range prices[1:] {
		f, f0, f1 = f0, max(f0, f1+x), max(f1, f-x)
	}
	return f0
}

TypeScript Code
1
2
3
4
5
6
7
function maxProfit(prices: number[]): number {
    let [f, f0, f1] = [0, 0, -prices[0]];
    for (const x of prices.slice(1)) {
        [f, f0, f1] = [f0, Math.max(f0, f1 + x), Math.max(f1, f - x)];
    }
    return f0;
}