1586. Binary Search Tree Iterator II

Description

Implement the BSTIterator class that represents an iterator over the in-order traversal of a binary search tree (BST):

  • BSTIterator(TreeNode root) Initializes an object of the BSTIterator class. The root of the BST is given as part of the constructor. The pointer should be initialized to a non-existent number smaller than any element in the BST.
  • boolean hasNext() Returns true if there exists a number in the traversal to the right of the pointer, otherwise returns false.
  • int next() Moves the pointer to the right, then returns the number at the pointer.
  • boolean hasPrev() Returns true if there exists a number in the traversal to the left of the pointer, otherwise returns false.
  • int prev() Moves the pointer to the left, then returns the number at the pointer.

Notice that by initializing the pointer to a non-existent smallest number, the first call to next() will return the smallest element in the BST.

You may assume that next() and prev() calls will always be valid. That is, there will be at least a next/previous number in the in-order traversal when next()/prev() is called.

 

Example 1:

Input
["BSTIterator", "next", "next", "prev", "next", "hasNext", "next", "next", "next", "hasNext", "hasPrev", "prev", "prev"]
[[[7, 3, 15, null, null, 9, 20]], [null], [null], [null], [null], [null], [null], [null], [null], [null], [null], [null], [null]]
Output
[null, 3, 7, 3, 7, true, 9, 15, 20, false, true, 15, 9]

Explanation
// The underlined element is where the pointer currently is.
BSTIterator bSTIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]); // state is   [3, 7, 9, 15, 20]
bSTIterator.next(); // state becomes [3, 7, 9, 15, 20], return 3
bSTIterator.next(); // state becomes [3, 7, 9, 15, 20], return 7
bSTIterator.prev(); // state becomes [3, 7, 9, 15, 20], return 3
bSTIterator.next(); // state becomes [3, 7, 9, 15, 20], return 7
bSTIterator.hasNext(); // return true
bSTIterator.next(); // state becomes [3, 7, 9, 15, 20], return 9
bSTIterator.next(); // state becomes [3, 7, 9, 15, 20], return 15
bSTIterator.next(); // state becomes [3, 7, 9, 15, 20], return 20
bSTIterator.hasNext(); // return false
bSTIterator.hasPrev(); // return true
bSTIterator.prev(); // state becomes [3, 7, 9, 15, 20], return 15
bSTIterator.prev(); // state becomes [3, 7, 9, 15, 20], return 9

 

Constraints:

  • The number of nodes in the tree is in the range [1, 105].
  • 0 <= Node.val <= 106
  • At most 105 calls will be made to hasNext, next, hasPrev, and prev.

 

Follow up: Could you solve the problem without precalculating the values of the tree?

Solutions

Solution 1: In-order Traversal + Array

We can use in-order traversal to store the values of all nodes in the binary search tree into an array $nums$, and then use the array to implement the iterator. We define a pointer $i$, initially $i = -1$, which points to an element in the array $nums$. Each time we call $next()$, we add $1$ to the value of $i$ and return $nums[i]$; each time we call $prev()$, we subtract $1$ from the value of $i$ and return $nums[i]$.

In terms of time complexity, initializing the iterator requires $O(n)$ time, where $n$ is the number of nodes in the binary search tree. Each call to $next()$ and $prev()$ requires $O(1)$ time. In terms of space complexity, we need $O(n)$ space to store the values of all nodes in the binary search tree.

Python Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class BSTIterator:
    def __init__(self, root: Optional[TreeNode]):
        self.nums = []

        def dfs(root):
            if root is None:
                return
            dfs(root.left)
            self.nums.append(root.val)
            dfs(root.right)

        dfs(root)
        self.i = -1

    def hasNext(self) -> bool:
        return self.i < len(self.nums) - 1

    def next(self) -> int:
        self.i += 1
        return self.nums[self.i]

    def hasPrev(self) -> bool:
        return self.i > 0

    def prev(self) -> int:
        self.i -= 1
        return self.nums[self.i]


# Your BSTIterator object will be instantiated and called as such:
# obj = BSTIterator(root)
# param_1 = obj.hasNext()
# param_2 = obj.next()
# param_3 = obj.hasPrev()
# param_4 = obj.prev()

Java Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class BSTIterator {
    private List<Integer> nums = new ArrayList<>();
    private int i = -1;

    public BSTIterator(TreeNode root) {
        dfs(root);
    }

    public boolean hasNext() {
        return i < nums.size() - 1;
    }

    public int next() {
        return nums.get(++i);
    }

    public boolean hasPrev() {
        return i > 0;
    }

    public int prev() {
        return nums.get(--i);
    }

    private void dfs(TreeNode root) {
        if (root == null) {
            return;
        }
        dfs(root.left);
        nums.add(root.val);
        dfs(root.right);
    }
}

/**
 * Your BSTIterator object will be instantiated and called as such:
 * BSTIterator obj = new BSTIterator(root);
 * boolean param_1 = obj.hasNext();
 * int param_2 = obj.next();
 * boolean param_3 = obj.hasPrev();
 * int param_4 = obj.prev();
 */

C++ Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class BSTIterator {
public:
    BSTIterator(TreeNode* root) {
        dfs(root);
        n = nums.size();
    }

    bool hasNext() {
        return i < n - 1;
    }

    int next() {
        return nums[++i];
    }

    bool hasPrev() {
        return i > 0;
    }

    int prev() {
        return nums[--i];
    }

private:
    vector<int> nums;
    int i = -1;
    int n;

    void dfs(TreeNode* root) {
        if (!root) {
            return;
        }
        dfs(root->left);
        nums.push_back(root->val);
        dfs(root->right);
    }
};

/**
 * Your BSTIterator object will be instantiated and called as such:
 * BSTIterator* obj = new BSTIterator(root);
 * bool param_1 = obj->hasNext();
 * int param_2 = obj->next();
 * bool param_3 = obj->hasPrev();
 * int param_4 = obj->prev();
 */

Go Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
type BSTIterator struct {
	nums []int
	i, n int
}

func Constructor(root *TreeNode) BSTIterator {
	nums := []int{}
	var dfs func(*TreeNode)
	dfs = func(root *TreeNode) {
		if root == nil {
			return
		}
		dfs(root.Left)
		nums = append(nums, root.Val)
		dfs(root.Right)
	}
	dfs(root)
	return BSTIterator{nums, -1, len(nums)}
}

func (this *BSTIterator) HasNext() bool {
	return this.i < this.n-1
}

func (this *BSTIterator) Next() int {
	this.i++
	return this.nums[this.i]
}

func (this *BSTIterator) HasPrev() bool {
	return this.i > 0
}

func (this *BSTIterator) Prev() int {
	this.i--
	return this.nums[this.i]
}

/**
 * Your BSTIterator object will be instantiated and called as such:
 * obj := Constructor(root);
 * param_1 := obj.HasNext();
 * param_2 := obj.Next();
 * param_3 := obj.HasPrev();
 * param_4 := obj.Prev();
 */

TypeScript Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

class BSTIterator {
    private nums: number[];
    private n: number;
    private i: number;

    constructor(root: TreeNode | null) {
        this.nums = [];
        const dfs = (root: TreeNode | null) => {
            if (!root) {
                return;
            }
            dfs(root.left);
            this.nums.push(root.val);
            dfs(root.right);
        };
        dfs(root);
        this.n = this.nums.length;
        this.i = -1;
    }

    hasNext(): boolean {
        return this.i < this.n - 1;
    }

    next(): number {
        return this.nums[++this.i];
    }

    hasPrev(): boolean {
        return this.i > 0;
    }

    prev(): number {
        return this.nums[--this.i];
    }
}

/**
 * Your BSTIterator object will be instantiated and called as such:
 * var obj = new BSTIterator(root)
 * var param_1 = obj.hasNext()
 * var param_2 = obj.next()
 * var param_3 = obj.hasPrev()
 * var param_4 = obj.prev()
 */