94. Binary Tree Inorder Traversal

Description

Given the root of a binary tree, return the inorder traversal of its nodes' values.

 

Example 1:

Input: root = [1,null,2,3]
Output: [1,3,2]

Example 2:

Input: root = []
Output: []

Example 3:

Input: root = [1]
Output: [1]

 

Constraints:

  • The number of nodes in the tree is in the range [0, 100].
  • -100 <= Node.val <= 100

 

Follow up: Recursive solution is trivial, could you do it iteratively?

Solutions

Solution 1: Recursive Traversal

We first recursively traverse the left subtree, then visit the root node, and finally recursively traverse the right subtree.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree, and the space complexity mainly depends on the stack space of the recursive call.

Python Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        def dfs(root):
            if root is None:
                return
            dfs(root.left)
            nonlocal ans
            ans.append(root.val)
            dfs(root.right)

        ans = []
        dfs(root)
        return ans

Java Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    private List<Integer> ans;

    public List<Integer> inorderTraversal(TreeNode root) {
        ans = new ArrayList<>();
        dfs(root);
        return ans;
    }

    private void dfs(TreeNode root) {
        if (root == null) {
            return;
        }
        dfs(root.left);
        ans.add(root.val);
        dfs(root.right);
    }
}

C++ Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> ans;
        while (root) {
            if (!root->left) {
                ans.push_back(root->val);
                root = root->right;
            } else {
                TreeNode* prev = root->left;
                while (prev->right && prev->right != root) {
                    prev = prev->right;
                }
                if (!prev->right) {
                    prev->right = root;
                    root = root->left;
                } else {
                    ans.push_back(root->val);
                    prev->right = nullptr;
                    root = root->right;
                }
            }
        }
        return ans;
    }
};

Go Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func inorderTraversal(root *TreeNode) []int {
	var ans []int
	for root != nil {
		if root.Left == nil {
			ans = append(ans, root.Val)
			root = root.Right
		} else {
			prev := root.Left
			for prev.Right != nil && prev.Right != root {
				prev = prev.Right
			}
			if prev.Right == nil {
				prev.Right = root
				root = root.Left
			} else {
				ans = append(ans, root.Val)
				prev.Right = nil
				root = root.Right
			}
		}
	}
	return ans
}

TypeScript Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function inorderTraversal(root: TreeNode | null): number[] {
    if (root == null) {
        return [];
    }
    return [...inorderTraversal(root.left), root.val, ...inorderTraversal(root.right)];
}

Rust Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
    fn dfs(root: &Option<Rc<RefCell<TreeNode>>>, res: &mut Vec<i32>) {
        if root.is_none() {
            return;
        }
        let node = root.as_ref().unwrap().borrow();
        Self::dfs(&node.left, res);
        res.push(node.val);
        Self::dfs(&node.right, res);
    }

    pub fn inorder_traversal(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<i32> {
        let mut res = vec![];
        Self::dfs(&root, &mut res);
        res
    }
}

JavaScript Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {number[]}
 */
var inorderTraversal = function (root) {
    let ans = [];
    function dfs(root) {
        if (!root) return;
        dfs(root.left);
        ans.push(root.val);
        dfs(root.right);
    }
    dfs(root);
    return ans;
};

Solution 2: Stack Implementation for Non-recursive Traversal

The non-recursive approach is as follows:

  1. Define a stack stk.
  2. Push the left nodes of the tree into the stack in sequence.
  3. When the left node is null, pop and process the top element of the stack.
  4. Repeat steps 2-3.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree, and the space complexity mainly depends on the stack space.

Python Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        ans, stk = [], []
        while root or stk:
            if root:
                stk.append(root)
                root = root.left
            else:
                root = stk.pop()
                ans.append(root.val)
                root = root.right
        return ans

Java Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> ans = new ArrayList<>();
        Deque<TreeNode> stk = new ArrayDeque<>();
        while (root != null || !stk.isEmpty()) {
            if (root != null) {
                stk.push(root);
                root = root.left;
            } else {
                root = stk.pop();
                ans.add(root.val);
                root = root.right;
            }
        }
        return ans;
    }
}

TypeScript Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function inorderTraversal(root: TreeNode | null): number[] {
    const res = [];
    const stack = [];
    while (root != null || stack.length != 0) {
        if (root != null) {
            stack.push(root);
            root = root.left;
        } else {
            const { val, right } = stack.pop();
            res.push(val);
            root = right;
        }
    }
    return res;
}

Rust Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::rc::Rc;
use std::cell::RefCell;
impl Solution {
    pub fn inorder_traversal(mut root: Option<Rc<RefCell<TreeNode>>>) -> Vec<i32> {
        let mut res = vec![];
        let mut stack = vec![];
        while root.is_some() || !stack.is_empty() {
            if root.is_some() {
                let next = root.as_mut().unwrap().borrow_mut().left.take();
                stack.push(root);
                root = next;
            } else {
                let mut node = stack.pop().unwrap();
                let mut node = node.as_mut().unwrap().borrow_mut();
                res.push(node.val);
                root = node.right.take();
            }
        }
        res
    }
}

JavaScript Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {number[]}
 */
var inorderTraversal = function (root) {
    let ans = [],
        stk = [];
    while (root || stk.length > 0) {
        if (root) {
            stk.push(root);
            root = root.left;
        } else {
            root = stk.pop();
            ans.push(root.val);
            root = root.right;
        }
    }
    return ans;
};

Solution 3: Morris Implementation for In-order Traversal

Morris traversal does not require a stack, so the space complexity is $O(1)$. The core idea is:

Traverse the binary tree nodes,

  1. If the left subtree of the current node root is null, add the current node value to the result list ans, and update the current node to root.right.
  2. If the left subtree of the current node root is not null, find the rightmost node prev of the left subtree (which is the predecessor node of the root node in in-order traversal):
    • If the right subtree of the predecessor node prev is null, point the right subtree of the predecessor node to the current node root, and update the current node to root.left.
    • If the right subtree of the predecessor node prev is not null, add the current node value to the result list ans, then point the right subtree of the predecessor node to null (i.e., disconnect prev and root), and update the current node to root.right.
  3. Repeat the above steps until the binary tree node is null, and the traversal ends.

The time complexity is $O(n)$, and the space complexity is $O(1)$. Here, $n$ is the number of nodes in the binary tree.

Python Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        ans = []
        while root:
            if root.left is None:
                ans.append(root.val)
                root = root.right
            else:
                prev = root.left
                while prev.right and prev.right != root:
                    prev = prev.right
                if prev.right is None:
                    prev.right = root
                    root = root.left
                else:
                    ans.append(root.val)
                    prev.right = None
                    root = root.right
        return ans

Java Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> ans = new ArrayList<>();
        while (root != null) {
            if (root.left == null) {
                ans.add(root.val);
                root = root.right;
            } else {
                TreeNode prev = root.left;
                while (prev.right != null && prev.right != root) {
                    prev = prev.right;
                }
                if (prev.right == null) {
                    prev.right = root;
                    root = root.left;
                } else {
                    ans.add(root.val);
                    prev.right = null;
                    root = root.right;
                }
            }
        }
        return ans;
    }
}

TypeScript Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function inorderTraversal(root: TreeNode | null): number[] {
    const res = [];
    while (root != null) {
        const { val, left, right } = root;
        if (left == null) {
            res.push(val);
            root = right;
        } else {
            let mostRight = left;
            while (mostRight.right != null && mostRight.right != root) {
                mostRight = mostRight.right;
            }
            if (mostRight.right == root) {
                res.push(val);
                mostRight.right = null;
                root = right;
            } else {
                mostRight.right = root;
                root = left;
            }
        }
    }
    return res;
}

JavaScript Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {number[]}
 */
var inorderTraversal = function (root) {
    let ans = [];
    while (root) {
        if (!root.left) {
            ans.push(root.val);
            root = root.right;
        } else {
            let prev = root.left;
            while (prev.right && prev.right != root) {
                prev = prev.right;
            }
            if (!prev.right) {
                prev.right = root;
                root = root.left;
            } else {
                ans.push(root.val);
                prev.right = null;
                root = root.right;
            }
        }
    }
    return ans;
};