605. Can Place Flowers

Description

You have a long flowerbed in which some of the plots are planted, and some are not. However, flowers cannot be planted in adjacent plots.

Given an integer array flowerbed containing 0's and 1's, where 0 means empty and 1 means not empty, and an integer n, return true if n new flowers can be planted in the flowerbed without violating the no-adjacent-flowers rule and false otherwise.

 

Example 1:

Input: flowerbed = [1,0,0,0,1], n = 1
Output: true

Example 2:

Input: flowerbed = [1,0,0,0,1], n = 2
Output: false

 

Constraints:

  • 1 <= flowerbed.length <= 2 * 104
  • flowerbed[i] is 0 or 1.
  • There are no two adjacent flowers in flowerbed.
  • 0 <= n <= flowerbed.length

Solutions

Solution 1: Greedy

We directly traverse the array $flowerbed$. For each position $i$, if $flowerbed[i]=0$ and its adjacent positions on the left and right are also $0$, then we can plant a flower at this position. Otherwise, we cannot. Finally, we count the number of flowers that can be planted. If it is not less than $n$, we return $true$, otherwise we return $false$.

The time complexity is $O(n)$, where $n$ is the length of the array $flowerbed$. We only need to traverse the array once. The space complexity is $O(1)$.

Python Code
1
2
3
4
5
6
7
8
class Solution:
    def canPlaceFlowers(self, flowerbed: List[int], n: int) -> bool:
        flowerbed = [0] + flowerbed + [0]
        for i in range(1, len(flowerbed) - 1):
            if sum(flowerbed[i - 1 : i + 2]) == 0:
                flowerbed[i] = 1
                n -= 1
        return n <= 0

Java Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution {
    public boolean canPlaceFlowers(int[] flowerbed, int n) {
        int m = flowerbed.length;
        for (int i = 0; i < m; ++i) {
            int l = i == 0 ? 0 : flowerbed[i - 1];
            int r = i == m - 1 ? 0 : flowerbed[i + 1];
            if (l + flowerbed[i] + r == 0) {
                flowerbed[i] = 1;
                --n;
            }
        }
        return n <= 0;
    }
}

C++ Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution {
public:
    bool canPlaceFlowers(vector<int>& flowerbed, int n) {
        int m = flowerbed.size();
        for (int i = 0; i < m; ++i) {
            int l = i == 0 ? 0 : flowerbed[i - 1];
            int r = i == m - 1 ? 0 : flowerbed[i + 1];
            if (l + flowerbed[i] + r == 0) {
                flowerbed[i] = 1;
                --n;
            }
        }
        return n <= 0;
    }
};

Go Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
func canPlaceFlowers(flowerbed []int, n int) bool {
	m := len(flowerbed)
	for i, v := range flowerbed {
		l, r := 0, 0
		if i > 0 {
			l = flowerbed[i-1]
		}
		if i < m-1 {
			r = flowerbed[i+1]
		}
		if l+v+r == 0 {
			flowerbed[i] = 1
			n--
		}
	}
	return n <= 0
}

TypeScript Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
function canPlaceFlowers(flowerbed: number[], n: number): boolean {
    const m = flowerbed.length;
    for (let i = 0; i < m; ++i) {
        const l = i === 0 ? 0 : flowerbed[i - 1];
        const r = i === m - 1 ? 0 : flowerbed[i + 1];
        if (l + flowerbed[i] + r === 0) {
            flowerbed[i] = 1;
            --n;
        }
    }
    return n <= 0;
}

Rust Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
impl Solution {
    pub fn can_place_flowers(flowerbed: Vec<i32>, n: i32) -> bool {
        let (mut flowers, mut cnt) = (vec![0], 0);
        flowers.append(&mut flowerbed.clone());
        flowers.push(0);

        for i in 1..flowers.len() - 1 {
            let (l, r) = (flowers[i - 1], flowers[i + 1]);
            if l + flowers[i] + r == 0 {
                flowers[i] = 1;
                cnt += 1;
            }
        }
        cnt >= n
    }
}

PHP Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
    /**
     * @param Integer[] $flowerbed
     * @param Integer $n
     * @return Boolean
     */
    function canPlaceFlowers($flowerbed, $n) {
        array_push($flowerbed, 0);
        array_unshift($flowerbed, 0);
        for ($i = 1; $i < count($flowerbed) - 1; $i++) {
            if ($flowerbed[$i] === 0) {
                if ($flowerbed[$i - 1] === 0 && $flowerbed[$i + 1] === 0) {
                    $flowerbed[$i] = 1;
                    $n--;
                }
            }
        }
        return $n <= 0;
    }
}