Description#
A pangram is a sentence where every letter of the English alphabet appears at least once.
Given a string sentence
containing only lowercase English letters, return true
if sentence
is a pangram, or false
otherwise.
Example 1:
Input: sentence = "thequickbrownfoxjumpsoverthelazydog"
Output: true
Explanation: sentence contains at least one of every letter of the English alphabet.
Example 2:
Input: sentence = "leetcode"
Output: false
Constraints:
1 <= sentence.length <= 1000
sentence
consists of lowercase English letters.
Solutions#
Solution 1: Array or Hash Table#
Traverse the string sentence
, use an array or hash table to record the letters that have appeared, and finally check whether there are $26$ letters in the array or hash table.
The time complexity is $O(n)$, and the space complexity is $O(C)$. Where $n$ is the length of the string sentence
, and $C$ is the size of the character set. In this problem, $C = 26$.
1
2
3
| class Solution:
def checkIfPangram(self, sentence: str) -> bool:
return len(set(sentence)) == 26
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| class Solution {
public boolean checkIfPangram(String sentence) {
boolean[] vis = new boolean[26];
for (int i = 0; i < sentence.length(); ++i) {
vis[sentence.charAt(i) - 'a'] = true;
}
for (boolean v : vis) {
if (!v) {
return false;
}
}
return true;
}
}
|
1
2
3
4
5
6
7
8
9
10
| class Solution {
public:
bool checkIfPangram(string sentence) {
int vis[26] = {0};
for (char& c : sentence) vis[c - 'a'] = 1;
for (int& v : vis)
if (!v) return false;
return true;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
| func checkIfPangram(sentence string) bool {
vis := [26]bool{}
for _, c := range sentence {
vis[c-'a'] = true
}
for _, v := range vis {
if !v {
return false
}
}
return true
}
|
1
2
3
4
5
6
7
| function checkIfPangram(sentence: string): boolean {
const vis = new Array(26).fill(false);
for (const c of sentence) {
vis[c.charCodeAt(0) - 'a'.charCodeAt(0)] = true;
}
return vis.every(v => v);
}
|
1
2
3
4
5
6
7
8
9
| impl Solution {
pub fn check_if_pangram(sentence: String) -> bool {
let mut vis = [false; 26];
for c in sentence.as_bytes() {
vis[(*c - b'a') as usize] = true;
}
vis.iter().all(|v| *v)
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
| bool checkIfPangram(char* sentence) {
int vis[26] = {0};
for (int i = 0; sentence[i]; i++) {
vis[sentence[i] - 'a'] = 1;
}
for (int i = 0; i < 26; i++) {
if (!vis[i]) {
return 0;
}
}
return 1;
}
|
Solution 2: Bit Manipulation#
We can also use an integer $mask$ to record the letters that have appeared, where the $i$-th bit of $mask$ indicates whether the $i$-th letter has appeared.
Finally, check whether there are $26$ $1$s in the binary representation of $mask$, that is, check whether $mask$ is equal to $2^{26} - 1$. If so, return true
, otherwise return false
.
The time complexity is $O(n)$, where $n$ is the length of the string sentence
. The space complexity is $O(1)$.
1
2
3
4
5
6
| class Solution:
def checkIfPangram(self, sentence: str) -> bool:
mask = 0
for c in sentence:
mask |= 1 << (ord(c) - ord('a'))
return mask == (1 << 26) - 1
|
1
2
3
4
5
6
7
8
9
| class Solution {
public boolean checkIfPangram(String sentence) {
int mask = 0;
for (int i = 0; i < sentence.length(); ++i) {
mask |= 1 << (sentence.charAt(i) - 'a');
}
return mask == (1 << 26) - 1;
}
}
|
1
2
3
4
5
6
7
8
| class Solution {
public:
bool checkIfPangram(string sentence) {
int mask = 0;
for (char& c : sentence) mask |= 1 << (c - 'a');
return mask == (1 << 26) - 1;
}
};
|
1
2
3
4
5
6
7
| func checkIfPangram(sentence string) bool {
mask := 0
for _, c := range sentence {
mask |= 1 << int(c-'a')
}
return mask == 1<<26-1
}
|
1
2
3
4
5
6
7
| function checkIfPangram(sentence: string): boolean {
let mark = 0;
for (const c of sentence) {
mark |= 1 << (c.charCodeAt(0) - 'a'.charCodeAt(0));
}
return mark === (1 << 26) - 1;
}
|
1
2
3
4
5
6
7
8
9
| impl Solution {
pub fn check_if_pangram(sentence: String) -> bool {
let mut mark = 0;
for c in sentence.as_bytes() {
mark |= 1 << (*c - b'a');
}
mark == (1 << 26) - 1
}
}
|
1
2
3
4
5
6
7
| bool checkIfPangram(char* sentence) {
int mark = 0;
for (int i = 0; sentence[i]; i++) {
mark |= 1 << (sentence[i] - 'a');
}
return mark == (1 << 26) - 1;
}
|