1697. Checking Existence of Edge Length Limited Paths

Description

An undirected graph of n nodes is defined by edgeList, where edgeList[i] = [ui, vi, disi] denotes an edge between nodes ui and vi with distance disi. Note that there may be multiple edges between two nodes.

Given an array queries, where queries[j] = [pj, qj, limitj], your task is to determine for each queries[j] whether there is a path between pj and qj such that each edge on the path has a distance strictly less than limitj .

Return a boolean array answer, where answer.length == queries.length and the jth value of answer is true if there is a path for queries[j] is true, and false otherwise.

 

Example 1:

Input: n = 3, edgeList = [[0,1,2],[1,2,4],[2,0,8],[1,0,16]], queries = [[0,1,2],[0,2,5]]
Output: [false,true]
Explanation: The above figure shows the given graph. Note that there are two overlapping edges between 0 and 1 with distances 2 and 16.
For the first query, between 0 and 1 there is no path where each distance is less than 2, thus we return false for this query.
For the second query, there is a path (0 -> 1 -> 2) of two edges with distances less than 5, thus we return true for this query.

Example 2:

Input: n = 5, edgeList = [[0,1,10],[1,2,5],[2,3,9],[3,4,13]], queries = [[0,4,14],[1,4,13]]
Output: [true,false]
Explanation: The above figure shows the given graph.

 

Constraints:

  • 2 <= n <= 105
  • 1 <= edgeList.length, queries.length <= 105
  • edgeList[i].length == 3
  • queries[j].length == 3
  • 0 <= ui, vi, pj, qj <= n - 1
  • ui != vi
  • pj != qj
  • 1 <= disi, limitj <= 109
  • There may be multiple edges between two nodes.

Solutions

Solution 1

Python Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class Solution:
    def distanceLimitedPathsExist(
        self, n: int, edgeList: List[List[int]], queries: List[List[int]]
    ) -> List[bool]:
        def find(x):
            if p[x] != x:
                p[x] = find(p[x])
            return p[x]

        p = list(range(n))
        edgeList.sort(key=lambda x: x[2])
        j = 0
        ans = [False] * len(queries)
        for i, (a, b, limit) in sorted(enumerate(queries), key=lambda x: x[1][2]):
            while j < len(edgeList) and edgeList[j][2] < limit:
                u, v, _ = edgeList[j]
                p[find(u)] = find(v)
                j += 1
            ans[i] = find(a) == find(b)
        return ans

Java Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
class Solution {
    private int[] p;

    public boolean[] distanceLimitedPathsExist(int n, int[][] edgeList, int[][] queries) {
        p = new int[n];
        for (int i = 0; i < n; ++i) {
            p[i] = i;
        }
        Arrays.sort(edgeList, (a, b) -> a[2] - b[2]);
        int m = queries.length;
        boolean[] ans = new boolean[m];
        Integer[] qid = new Integer[m];
        for (int i = 0; i < m; ++i) {
            qid[i] = i;
        }
        Arrays.sort(qid, (i, j) -> queries[i][2] - queries[j][2]);
        int j = 0;
        for (int i : qid) {
            int a = queries[i][0], b = queries[i][1], limit = queries[i][2];
            while (j < edgeList.length && edgeList[j][2] < limit) {
                int u = edgeList[j][0], v = edgeList[j][1];
                p[find(u)] = find(v);
                ++j;
            }
            ans[i] = find(a) == find(b);
        }
        return ans;
    }

    private int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }
}

C++ Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution {
public:
    vector<bool> distanceLimitedPathsExist(int n, vector<vector<int>>& edgeList, vector<vector<int>>& queries) {
        vector<int> p(n);
        iota(p.begin(), p.end(), 0);
        sort(edgeList.begin(), edgeList.end(), [](auto& a, auto& b) { return a[2] < b[2]; });
        function<int(int)> find = [&](int x) -> int {
            if (p[x] != x) p[x] = find(p[x]);
            return p[x];
        };
        int m = queries.size();
        vector<bool> ans(m);
        vector<int> qid(m);
        iota(qid.begin(), qid.end(), 0);
        sort(qid.begin(), qid.end(), [&](int i, int j) { return queries[i][2] < queries[j][2]; });
        int j = 0;
        for (int i : qid) {
            int a = queries[i][0], b = queries[i][1], limit = queries[i][2];
            while (j < edgeList.size() && edgeList[j][2] < limit) {
                int u = edgeList[j][0], v = edgeList[j][1];
                p[find(u)] = find(v);
                ++j;
            }
            ans[i] = find(a) == find(b);
        }
        return ans;
    }
};

Go Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
func distanceLimitedPathsExist(n int, edgeList [][]int, queries [][]int) []bool {
	p := make([]int, n)
	for i := range p {
		p[i] = i
	}
	sort.Slice(edgeList, func(i, j int) bool { return edgeList[i][2] < edgeList[j][2] })
	var find func(int) int
	find = func(x int) int {
		if p[x] != x {
			p[x] = find(p[x])
		}
		return p[x]
	}
	m := len(queries)
	qid := make([]int, m)
	ans := make([]bool, m)
	for i := range qid {
		qid[i] = i
	}
	sort.Slice(qid, func(i, j int) bool { return queries[qid[i]][2] < queries[qid[j]][2] })
	j := 0
	for _, i := range qid {
		a, b, limit := queries[i][0], queries[i][1], queries[i][2]
		for j < len(edgeList) && edgeList[j][2] < limit {
			u, v := edgeList[j][0], edgeList[j][1]
			p[find(u)] = find(v)
			j++
		}
		ans[i] = find(a) == find(b)
	}
	return ans
}

Rust Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
impl Solution {
    #[allow(dead_code)]
    pub fn distance_limited_paths_exist(
        n: i32,
        edge_list: Vec<Vec<i32>>,
        queries: Vec<Vec<i32>>
    ) -> Vec<bool> {
        let mut disjoint_set: Vec<usize> = vec![0; n as usize];
        let mut ans_vec: Vec<bool> = vec![false; queries.len()];
        let mut q_vec: Vec<usize> = vec![0; queries.len()];

        // Initialize the set
        for i in 0..n {
            disjoint_set[i as usize] = i as usize;
        }

        // Initialize the q_vec
        for i in 0..queries.len() {
            q_vec[i] = i;
        }

        // Sort the q_vec based on the query limit, from the lowest to highest
        q_vec.sort_by(|i, j| queries[*i][2].cmp(&queries[*j][2]));

        // Sort the edge_list based on the edge weight, from the lowest to highest
        let mut edge_list = edge_list.clone();
        edge_list.sort_by(|i, j| i[2].cmp(&j[2]));

        let mut edge_idx: usize = 0;
        for q_idx in &q_vec {
            let s = queries[*q_idx][0] as usize;
            let d = queries[*q_idx][1] as usize;
            let limit = queries[*q_idx][2];
            // Construct the disjoint set
            while edge_idx < edge_list.len() && edge_list[edge_idx][2] < limit {
                Solution::union(
                    edge_list[edge_idx][0] as usize,
                    edge_list[edge_idx][1] as usize,
                    &mut disjoint_set
                );
                edge_idx += 1;
            }
            // If the parents of s & d are the same, this query should be `true`
            // Otherwise, the current query is `false`
            ans_vec[*q_idx] = Solution::check_valid(s, d, &mut disjoint_set);
        }

        ans_vec
    }

    #[allow(dead_code)]
    pub fn find(x: usize, d_set: &mut Vec<usize>) -> usize {
        if d_set[x] != x {
            d_set[x] = Solution::find(d_set[x], d_set);
        }
        return d_set[x];
    }

    #[allow(dead_code)]
    pub fn union(s: usize, d: usize, d_set: &mut Vec<usize>) {
        let p_s = Solution::find(s, d_set);
        let p_d = Solution::find(d, d_set);
        d_set[p_s] = p_d;
    }

    #[allow(dead_code)]
    pub fn check_valid(s: usize, d: usize, d_set: &mut Vec<usize>) -> bool {
        let p_s = Solution::find(s, d_set);
        let p_d = Solution::find(d, d_set);
        p_s == p_d
    }
}