Description#
You are given two 0-indexed integer arrays nums1
and nums2
of length n
.
A range [l, r]
(inclusive) where 0 <= l <= r < n
is balanced if:
- For every
i
in the range [l, r]
, you pick either nums1[i]
or nums2[i]
. - The sum of the numbers you pick from
nums1
equals to the sum of the numbers you pick from nums2
(the sum is considered to be 0
if you pick no numbers from an array).
Two balanced ranges from [l1, r1]
and [l2, r2]
are considered to be different if at least one of the following is true:
l1 != l2
r1 != r2
nums1[i]
is picked in the first range, and nums2[i]
is picked in the second range or vice versa for at least one i
.
Return the number of different ranges that are balanced. Since the answer may be very large, return it modulo 109 + 7
.
Example 1:
Input: nums1 = [1,2,5], nums2 = [2,6,3]
Output: 3
Explanation: The balanced ranges are:
- [0, 1] where we choose nums2[0], and nums1[1].
The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 2 = 2.
- [0, 2] where we choose nums1[0], nums2[1], and nums1[2].
The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 1 + 5 = 6.
- [0, 2] where we choose nums1[0], nums1[1], and nums2[2].
The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 1 + 2 = 3.
Note that the second and third balanced ranges are different.
In the second balanced range, we choose nums2[1] and in the third balanced range, we choose nums1[1].
Example 2:
Input: nums1 = [0,1], nums2 = [1,0]
Output: 4
Explanation: The balanced ranges are:
- [0, 0] where we choose nums1[0].
The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 0 = 0.
- [1, 1] where we choose nums2[1].
The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 0 = 0.
- [0, 1] where we choose nums1[0] and nums2[1].
The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 0 = 0.
- [0, 1] where we choose nums2[0] and nums1[1].
The sum of the numbers chosen from nums1 equals the sum of the numbers chosen from nums2: 1 = 1.
Constraints:
n == nums1.length == nums2.length
1 <= n <= 100
0 <= nums1[i], nums2[i] <= 100
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| class Solution:
def countSubranges(self, nums1: List[int], nums2: List[int]) -> int:
n = len(nums1)
s1, s2 = sum(nums1), sum(nums2)
f = [[0] * (s1 + s2 + 1) for _ in range(n)]
ans = 0
mod = 10**9 + 7
for i, (a, b) in enumerate(zip(nums1, nums2)):
f[i][a + s2] += 1
f[i][-b + s2] += 1
if i:
for j in range(s1 + s2 + 1):
if j >= a:
f[i][j] = (f[i][j] + f[i - 1][j - a]) % mod
if j + b < s1 + s2 + 1:
f[i][j] = (f[i][j] + f[i - 1][j + b]) % mod
ans = (ans + f[i][s2]) % mod
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
| class Solution {
public int countSubranges(int[] nums1, int[] nums2) {
int n = nums1.length;
int s1 = Arrays.stream(nums1).sum();
int s2 = Arrays.stream(nums2).sum();
int[][] f = new int[n][s1 + s2 + 1];
int ans = 0;
final int mod = (int) 1e9 + 7;
for (int i = 0; i < n; ++i) {
int a = nums1[i], b = nums2[i];
f[i][a + s2]++;
f[i][-b + s2]++;
if (i > 0) {
for (int j = 0; j <= s1 + s2; ++j) {
if (j >= a) {
f[i][j] = (f[i][j] + f[i - 1][j - a]) % mod;
}
if (j + b <= s1 + s2) {
f[i][j] = (f[i][j] + f[i - 1][j + b]) % mod;
}
}
}
ans = (ans + f[i][s2]) % mod;
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
| class Solution {
public:
int countSubranges(vector<int>& nums1, vector<int>& nums2) {
int n = nums1.size();
int s1 = accumulate(nums1.begin(), nums1.end(), 0);
int s2 = accumulate(nums2.begin(), nums2.end(), 0);
int f[n][s1 + s2 + 1];
memset(f, 0, sizeof(f));
int ans = 0;
const int mod = 1e9 + 7;
for (int i = 0; i < n; ++i) {
int a = nums1[i], b = nums2[i];
f[i][a + s2]++;
f[i][-b + s2]++;
if (i) {
for (int j = 0; j <= s1 + s2; ++j) {
if (j >= a) {
f[i][j] = (f[i][j] + f[i - 1][j - a]) % mod;
}
if (j + b <= s1 + s2) {
f[i][j] = (f[i][j] + f[i - 1][j + b]) % mod;
}
}
}
ans = (ans + f[i][s2]) % mod;
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
| func countSubranges(nums1 []int, nums2 []int) (ans int) {
n := len(nums1)
s1, s2 := sum(nums1), sum(nums2)
f := make([][]int, n)
for i := range f {
f[i] = make([]int, s1+s2+1)
}
const mod int = 1e9 + 7
for i, a := range nums1 {
b := nums2[i]
f[i][a+s2]++
f[i][-b+s2]++
if i > 0 {
for j := 0; j <= s1+s2; j++ {
if j >= a {
f[i][j] = (f[i][j] + f[i-1][j-a]) % mod
}
if j+b <= s1+s2 {
f[i][j] = (f[i][j] + f[i-1][j+b]) % mod
}
}
}
ans = (ans + f[i][s2]) % mod
}
return
}
func sum(nums []int) (ans int) {
for _, x := range nums {
ans += x
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
| function countSubranges(nums1: number[], nums2: number[]): number {
const n = nums1.length;
const s1 = nums1.reduce((a, b) => a + b, 0);
const s2 = nums2.reduce((a, b) => a + b, 0);
const f: number[][] = Array(n)
.fill(0)
.map(() => Array(s1 + s2 + 1).fill(0));
const mod = 1e9 + 7;
let ans = 0;
for (let i = 0; i < n; ++i) {
const [a, b] = [nums1[i], nums2[i]];
f[i][a + s2]++;
f[i][-b + s2]++;
if (i) {
for (let j = 0; j <= s1 + s2; ++j) {
if (j >= a) {
f[i][j] = (f[i][j] + f[i - 1][j - a]) % mod;
}
if (j + b <= s1 + s2) {
f[i][j] = (f[i][j] + f[i - 1][j + b]) % mod;
}
}
}
ans = (ans + f[i][s2]) % mod;
}
return ans;
}
|