Description#
Given the root
of a binary tree where every node has a unique value and a target integer k
, return the value of the nearest leaf node to the target k
in the tree.
Nearest to a leaf means the least number of edges traveled on the binary tree to reach any leaf of the tree. Also, a node is called a leaf if it has no children.
Example 1:
Input: root = [1,3,2], k = 1
Output: 2
Explanation: Either 2 or 3 is the nearest leaf node to the target of 1.
Example 2:
Input: root = [1], k = 1
Output: 1
Explanation: The nearest leaf node is the root node itself.
Example 3:
Input: root = [1,2,3,4,null,null,null,5,null,6], k = 2
Output: 3
Explanation: The leaf node with value 3 (and not the leaf node with value 6) is nearest to the node with value 2.
Constraints:
- The number of nodes in the tree is in the range
[1, 1000]
. 1 <= Node.val <= 1000
- All the values of the tree are unique.
- There exist some node in the tree where
Node.val == k
.
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
| # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def findClosestLeaf(self, root: TreeNode, k: int) -> int:
def dfs(root, p):
if root:
g[root].append(p)
g[p].append(root)
dfs(root.left, root)
dfs(root.right, root)
g = defaultdict(list)
dfs(root, None)
q = deque([node for node in g if node and node.val == k])
seen = set()
while q:
node = q.popleft()
seen.add(node)
if node:
if node.left is None and node.right is None:
return node.val
for next in g[node]:
if next not in seen:
q.append(next)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
| /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private Map<TreeNode, List<TreeNode>> g;
public int findClosestLeaf(TreeNode root, int k) {
g = new HashMap<>();
dfs(root, null);
Deque<TreeNode> q = new LinkedList<>();
for (Map.Entry<TreeNode, List<TreeNode>> entry : g.entrySet()) {
if (entry.getKey() != null && entry.getKey().val == k) {
q.offer(entry.getKey());
break;
}
}
Set<TreeNode> seen = new HashSet<>();
while (!q.isEmpty()) {
TreeNode node = q.poll();
seen.add(node);
if (node != null) {
if (node.left == null && node.right == null) {
return node.val;
}
for (TreeNode next : g.get(node)) {
if (!seen.contains(next)) {
q.offer(next);
}
}
}
}
return 0;
}
private void dfs(TreeNode root, TreeNode p) {
if (root != null) {
g.computeIfAbsent(root, k -> new ArrayList<>()).add(p);
g.computeIfAbsent(p, k -> new ArrayList<>()).add(root);
dfs(root.left, root);
dfs(root.right, root);
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
| /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
unordered_map<TreeNode*, vector<TreeNode*>> g;
int findClosestLeaf(TreeNode* root, int k) {
dfs(root, nullptr);
queue<TreeNode*> q;
for (auto& e : g) {
if (e.first && e.first->val == k) {
q.push(e.first);
break;
}
}
unordered_set<TreeNode*> seen;
while (!q.empty()) {
auto node = q.front();
q.pop();
seen.insert(node);
if (node) {
if (!node->left && !node->right) return node->val;
for (auto next : g[node]) {
if (!seen.count(next))
q.push(next);
}
}
}
return 0;
}
void dfs(TreeNode* root, TreeNode* p) {
if (!root) return;
g[root].push_back(p);
g[p].push_back(root);
dfs(root->left, root);
dfs(root->right, root);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
| /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func findClosestLeaf(root *TreeNode, k int) int {
g := make(map[*TreeNode][]*TreeNode)
var dfs func(root, p *TreeNode)
dfs = func(root, p *TreeNode) {
if root == nil {
return
}
g[root] = append(g[root], p)
g[p] = append(g[p], root)
dfs(root.Left, root)
dfs(root.Right, root)
}
dfs(root, nil)
var q []*TreeNode
for t, _ := range g {
if t != nil && t.Val == k {
q = append(q, t)
break
}
}
seen := make(map[*TreeNode]bool)
for len(q) > 0 {
node := q[0]
q = q[1:]
seen[node] = true
if node != nil {
if node.Left == nil && node.Right == nil {
return node.Val
}
for _, next := range g[node] {
if !seen[next] {
q = append(q, next)
}
}
}
}
return 0
}
|