Description#
Given an integer array nums
, return true
if any value appears at least twice in the array, and return false
if every element is distinct.
Example 1:
Input: nums = [1,2,3,1]
Output: true
Example 2:
Input: nums = [1,2,3,4]
Output: false
Example 3:
Input: nums = [1,1,1,3,3,4,3,2,4,2]
Output: true
Constraints:
1 <= nums.length <= 105
-109 <= nums[i] <= 109
Solutions#
Solution 1: Sorting#
First, we sort the array nums
.
Then, we traverse the array. If there are two adjacent elements that are the same, it means that there are duplicate elements in the array, and we directly return true
.
Otherwise, when the traversal ends, we return false
.
The time complexity is $O(n \times \log n)$, where $n$ is the length of the array nums
.
1
2
3
| class Solution:
def containsDuplicate(self, nums: List[int]) -> bool:
return any(a == b for a, b in pairwise(sorted(nums)))
|
1
2
3
4
5
6
7
8
9
10
11
| class Solution {
public boolean containsDuplicate(int[] nums) {
Arrays.sort(nums);
for (int i = 0; i < nums.length - 1; ++i) {
if (nums[i] == nums[i + 1]) {
return true;
}
}
return false;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
| class Solution {
public:
bool containsDuplicate(vector<int>& nums) {
sort(nums.begin(), nums.end());
for (int i = 0; i < nums.size() - 1; ++i) {
if (nums[i] == nums[i + 1]) {
return true;
}
}
return false;
}
};
|
1
2
3
4
5
6
7
8
9
| func containsDuplicate(nums []int) bool {
sort.Ints(nums)
for i, v := range nums[1:] {
if v == nums[i] {
return true
}
}
return false
}
|
1
2
3
4
5
6
7
8
9
10
| function containsDuplicate(nums: number[]): boolean {
nums.sort((a, b) => a - b);
const n = nums.length;
for (let i = 1; i < n; i++) {
if (nums[i - 1] === nums[i]) {
return true;
}
}
return false;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
| impl Solution {
pub fn contains_duplicate(mut nums: Vec<i32>) -> bool {
nums.sort();
let n = nums.len();
for i in 1..n {
if nums[i - 1] == nums[i] {
return true;
}
}
false
}
}
|
1
2
3
4
5
6
7
| /**
* @param {number[]} nums
* @return {boolean}
*/
var containsDuplicate = function (nums) {
return new Set(nums).size !== nums.length;
};
|
1
2
3
4
5
| public class Solution {
public bool ContainsDuplicate(int[] nums) {
return nums.Distinct().Count() < nums.Length;
}
}
|
1
2
3
4
5
6
7
8
9
10
| class Solution {
/**
* @param Integer[] $nums
* @return Boolean
*/
function containsDuplicate($nums) {
$numsUnique = array_unique($nums);
return count($nums) != count($numsUnique);
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
| int cmp(const void* a, const void* b) {
return *(int*) a - *(int*) b;
}
bool containsDuplicate(int* nums, int numsSize) {
qsort(nums, numsSize, sizeof(int), cmp);
for (int i = 1; i < numsSize; i++) {
if (nums[i - 1] == nums[i]) {
return 1;
}
}
return 0;
}
|
Solution 2: Hash Table#
We traverse the array and record the elements that have appeared in the hash table $s$. If an element appears for the second time, it means that there are duplicate elements in the array, and we directly return true
.
The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n$ is the length of the array nums
.
1
2
3
| class Solution:
def containsDuplicate(self, nums: List[int]) -> bool:
return len(set(nums)) < len(nums)
|
1
2
3
4
5
6
7
8
9
10
11
| class Solution {
public boolean containsDuplicate(int[] nums) {
Set<Integer> s = new HashSet<>();
for (int num : nums) {
if (!s.add(num)) {
return true;
}
}
return false;
}
}
|
1
2
3
4
5
6
7
| class Solution {
public:
bool containsDuplicate(vector<int>& nums) {
unordered_set<int> s(nums.begin(), nums.end());
return s.size() < nums.size();
}
};
|
1
2
3
4
5
6
7
8
9
10
| func containsDuplicate(nums []int) bool {
s := map[int]bool{}
for _, v := range nums {
if s[v] {
return true
}
s[v] = true
}
return false
}
|
1
2
3
| function containsDuplicate(nums: number[]): boolean {
return new Set<number>(nums).size !== nums.length;
}
|
1
2
3
4
5
6
| use std::collections::HashSet;
impl Solution {
pub fn contains_duplicate(nums: Vec<i32>) -> bool {
nums.iter().collect::<HashSet<&i32>>().len() != nums.len()
}
}
|