Description#
A good meal is a meal that contains exactly two different food items with a sum of deliciousness equal to a power of two.
You can pick any two different foods to make a good meal.
Given an array of integers deliciousness
where deliciousness[i]
is the deliciousness of the ith
item of food, return the number of different good meals you can make from this list modulo 109 + 7
.
Note that items with different indices are considered different even if they have the same deliciousness value.
Example 1:
Input: deliciousness = [1,3,5,7,9]
Output: 4
Explanation: The good meals are (1,3), (1,7), (3,5) and, (7,9).
Their respective sums are 4, 8, 8, and 16, all of which are powers of 2.
Example 2:
Input: deliciousness = [1,1,1,3,3,3,7]
Output: 15
Explanation: The good meals are (1,1) with 3 ways, (1,3) with 9 ways, and (1,7) with 3 ways.
Constraints:
1 <= deliciousness.length <= 105
0 <= deliciousness[i] <= 220
Solutions#
Solution 1: Hash Table + Enumeration of Powers of Two#
According to the problem, we need to count the number of combinations in the array where the sum of two numbers is a power of $2$. Directly enumerating all combinations has a time complexity of $O(n^2)$, which will definitely time out.
We can traverse the array and use a hash table $cnt$ to maintain the number of occurrences of each element $d$ in the array.
For each element, we enumerate the powers of two $s$ as the sum of two numbers from small to large, and add the number of occurrences of $s - d$ in the hash table to the answer. Then increase the number of occurrences of the current element $d$ by one.
After the traversal ends, return the answer.
The time complexity is $O(n \times \log M)$, where $n$ is the length of the array deliciousness
, and $M$ is the upper limit of the elements. For this problem, the upper limit $M=2^{20}$.
We can also use a hash table $cnt$ to count the number of occurrences of each element in the array first.
Then enumerate the powers of two $s$ as the sum of two numbers from small to large. For each $s$, traverse each key-value pair $(a, m)$ in the hash table. If $s - a$ is also in the hash table, and $s - a \neq a$, then add $m \times cnt[s - a]$ to the answer; if $s - a = a$, then add $m \times (m - 1)$ to the answer.
Finally, divide the answer by $2$, modulo $10^9 + 7$, and return.
The time complexity is the same as the method above.
1
2
3
4
5
6
7
8
9
10
11
12
13
| class Solution:
def countPairs(self, deliciousness: List[int]) -> int:
mod = 10**9 + 7
mx = max(deliciousness) << 1
cnt = Counter()
ans = 0
for d in deliciousness:
s = 1
while s <= mx:
ans = (ans + cnt[s - d]) % mod
s <<= 1
cnt[d] += 1
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| class Solution {
private static final int MOD = (int) 1e9 + 7;
public int countPairs(int[] deliciousness) {
int mx = Arrays.stream(deliciousness).max().getAsInt() << 1;
int ans = 0;
Map<Integer, Integer> cnt = new HashMap<>();
for (int d : deliciousness) {
for (int s = 1; s <= mx; s <<= 1) {
ans = (ans + cnt.getOrDefault(s - d, 0)) % MOD;
}
cnt.merge(d, 1, Integer::sum);
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| class Solution {
public:
const int mod = 1e9 + 7;
int countPairs(vector<int>& deliciousness) {
int mx = *max_element(deliciousness.begin(), deliciousness.end()) << 1;
unordered_map<int, int> cnt;
int ans = 0;
for (auto& d : deliciousness) {
for (int s = 1; s <= mx; s <<= 1) {
ans = (ans + cnt[s - d]) % mod;
}
++cnt[d];
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
| func countPairs(deliciousness []int) (ans int) {
mx := slices.Max(deliciousness) << 1
const mod int = 1e9 + 7
cnt := map[int]int{}
for _, d := range deliciousness {
for s := 1; s <= mx; s <<= 1 {
ans = (ans + cnt[s-d]) % mod
}
cnt[d]++
}
return
}
|
Solution 2#
1
2
3
4
5
6
7
8
9
10
11
| class Solution:
def countPairs(self, deliciousness: List[int]) -> int:
mod = 10**9 + 7
cnt = Counter(deliciousness)
ans = 0
for i in range(22):
s = 1 << i
for a, m in cnt.items():
if (b := s - a) in cnt:
ans += m * (m - 1) if a == b else m * cnt[b]
return (ans >> 1) % mod
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
| class Solution {
private static final int MOD = (int) 1e9 + 7;
public int countPairs(int[] deliciousness) {
Map<Integer, Integer> cnt = new HashMap<>();
for (int d : deliciousness) {
cnt.put(d, cnt.getOrDefault(d, 0) + 1);
}
long ans = 0;
for (int i = 0; i < 22; ++i) {
int s = 1 << i;
for (var x : cnt.entrySet()) {
int a = x.getKey(), m = x.getValue();
int b = s - a;
if (!cnt.containsKey(b)) {
continue;
}
ans += 1L * m * (a == b ? m - 1 : cnt.get(b));
}
}
ans >>= 1;
return (int) (ans % MOD);
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| class Solution {
public:
const int mod = 1e9 + 7;
int countPairs(vector<int>& deliciousness) {
unordered_map<int, int> cnt;
for (int& d : deliciousness) ++cnt[d];
long long ans = 0;
for (int i = 0; i < 22; ++i) {
int s = 1 << i;
for (auto& [a, m] : cnt) {
int b = s - a;
if (!cnt.count(b)) continue;
ans += 1ll * m * (a == b ? (m - 1) : cnt[b]);
}
}
ans >>= 1;
return ans % mod;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
| func countPairs(deliciousness []int) (ans int) {
cnt := map[int]int{}
for _, d := range deliciousness {
cnt[d]++
}
const mod int = 1e9 + 7
for i := 0; i < 22; i++ {
s := 1 << i
for a, m := range cnt {
b := s - a
if n, ok := cnt[b]; ok {
if a == b {
ans += m * (m - 1)
} else {
ans += m * n
}
}
}
}
ans >>= 1
return ans % mod
}
|