Description#
You are given three positive integers n
, x
, and y
.
In a city, there exist houses numbered 1
to n
connected by n
streets. There is a street connecting the house numbered i
with the house numbered i + 1
for all 1 <= i <= n - 1
. An additional street connects the house numbered x
with the house numbered y
.
For each k
, such that 1 <= k <= n
, you need to find the number of pairs of houses (house1, house2)
such that the minimum number of streets that need to be traveled to reach house2
from house1
is k
.
Return a 1-indexed array result
of length n
where result[k]
represents the total number of pairs of houses such that the minimum streets required to reach one house from the other is k
.
Note that x
and y
can be equal.
Example 1:
Input: n = 3, x = 1, y = 3
Output: [6,0,0]
Explanation: Let's look at each pair of houses:
- For the pair (1, 2), we can go from house 1 to house 2 directly.
- For the pair (2, 1), we can go from house 2 to house 1 directly.
- For the pair (1, 3), we can go from house 1 to house 3 directly.
- For the pair (3, 1), we can go from house 3 to house 1 directly.
- For the pair (2, 3), we can go from house 2 to house 3 directly.
- For the pair (3, 2), we can go from house 3 to house 2 directly.
Example 2:
Input: n = 5, x = 2, y = 4
Output: [10,8,2,0,0]
Explanation: For each distance k the pairs are:
- For k == 1, the pairs are (1, 2), (2, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3), (4, 5), and (5, 4).
- For k == 2, the pairs are (1, 3), (3, 1), (1, 4), (4, 1), (2, 5), (5, 2), (3, 5), and (5, 3).
- For k == 3, the pairs are (1, 5), and (5, 1).
- For k == 4 and k == 5, there are no pairs.
Example 3:
Input: n = 4, x = 1, y = 1
Output: [6,4,2,0]
Explanation: For each distance k the pairs are:
- For k == 1, the pairs are (1, 2), (2, 1), (2, 3), (3, 2), (3, 4), and (4, 3).
- For k == 2, the pairs are (1, 3), (3, 1), (2, 4), and (4, 2).
- For k == 3, the pairs are (1, 4), and (4, 1).
- For k == 4, there are no pairs.
Constraints:
2 <= n <= 105
1 <= x, y <= n
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
| class Solution:
def countOfPairs(self, n: int, x: int, y: int) -> List[int]:
if abs(x - y) <= 1:
return [2 * x for x in reversed(range(n))]
cycle_len = abs(x - y) + 1
n2 = n - cycle_len + 2
res = [2 * x for x in reversed(range(n2))]
while len(res) < n:
res.append(0)
res2 = [cycle_len * 2] * (cycle_len >> 1)
if not cycle_len & 1:
res2[-1] = cycle_len
res2[0] -= 2
for i in range(len(res2)):
res[i] += res2[i]
if x > y:
x, y = y, x
tail1 = x - 1
tail2 = n - y
for tail in (tail1, tail2):
if not tail:
continue
i_mx = tail + (cycle_len >> 1)
val_mx = 4 * min((cycle_len - 3) >> 1, tail)
i_mx2 = i_mx - (1 - (cycle_len & 1))
res3 = [val_mx] * i_mx
res3[0] = 0
res3[1] = 0
if not cycle_len & 1:
res3[-1] = 0
for i, j in enumerate(range(4, val_mx, 4)):
res3[i + 2] = j
res3[i_mx2 - i - 1] = j
for i in range(1, tail + 1):
res3[i] += 2
if not cycle_len & 1:
mn = cycle_len >> 1
for i in range(mn, mn + tail):
res3[i] += 2
for i in range(len(res3)):
res[i] += res3[i]
return res
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
| class Solution {
public long[] countOfPairs(int n, int x, int y) {
--x;
--y;
if (x > y) {
int temp = x;
x = y;
y = temp;
}
long[] diff = new long[n];
for (int i = 0; i < n; ++i) {
diff[0] += 1 + 1;
++diff[Math.min(Math.abs(i - x), Math.abs(i - y) + 1)];
++diff[Math.min(Math.abs(i - y), Math.abs(i - x) + 1)];
--diff[Math.min(Math.abs(i - 0), Math.abs(i - y) + 1 + Math.abs(x - 0))];
--diff[Math.min(Math.abs(i - (n - 1)),
Math.abs(i - x) + 1 + Math.abs(y - (n - 1)))];
--diff[Math.max(x - i, 0) + Math.max(i - y, 0) + ((y - x) + 0) / 2];
--diff[Math.max(x - i, 0) + Math.max(i - y, 0) + ((y - x) + 1) / 2];
}
for (int i = 0; i + 1 < n; ++i) {
diff[i + 1] += diff[i];
}
return diff;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
| class Solution {
public:
vector<long long> countOfPairs(int n, int x, int y) {
--x, --y;
if (x > y) {
swap(x, y);
}
vector<long long> diff(n);
for (int i = 0; i < n; ++i) {
diff[0] += 1 + 1;
++diff[min(abs(i - x), abs(i - y) + 1)];
++diff[min(abs(i - y), abs(i - x) + 1)];
--diff[min(abs(i - 0), abs(i - y) + 1 + abs(x - 0))];
--diff[min(abs(i - (n - 1)), abs(i - x) + 1 + abs(y - (n - 1)))];
--diff[max(x - i, 0) + max(i - y, 0) + ((y - x) + 0) / 2];
--diff[max(x - i, 0) + max(i - y, 0) + ((y - x) + 1) / 2];
}
for (int i = 0; i + 1 < n; ++i) {
diff[i + 1] += diff[i];
}
return diff;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| func countOfPairs(n int, x int, y int) []int64 {
if x > y {
x, y = y, x
}
A := make([]int64, n)
for i := 1; i <= n; i++ {
A[0] += 2
A[min(int64(i-1), int64(math.Abs(float64(i-y)))+int64(x))] -= 1
A[min(int64(n-i), int64(math.Abs(float64(i-x)))+1+int64(n-y))] -= 1
A[min(int64(math.Abs(float64(i-x))), int64(math.Abs(float64(y-i)))+1)] += 1
A[min(int64(math.Abs(float64(i-x)))+1, int64(math.Abs(float64(y-i))))] += 1
r := max(int64(x-i), 0) + max(int64(i-y), 0)
A[r+int64((y-x+0)/2)] -= 1
A[r+int64((y-x+1)/2)] -= 1
}
for i := 1; i < n; i++ {
A[i] += A[i-1]
}
return A
}
|