Description#
There is an undirected tree with n
nodes labeled from 1
to n
. You are given the integer n
and a 2D integer array edges
of length n - 1
, where edges[i] = [ui, vi]
indicates that there is an edge between nodes ui
and vi
in the tree.
Return the number of valid paths in the tree.
A path (a, b)
is valid if there exists exactly one prime number among the node labels in the path from a
to b
.
Note that:
- The path
(a, b)
is a sequence of distinct nodes starting with node a
and ending with node b
such that every two adjacent nodes in the sequence share an edge in the tree. - Path
(a, b)
and path (b, a)
are considered the same and counted only once.
Example 1:
Input: n = 5, edges = [[1,2],[1,3],[2,4],[2,5]]
Output: 4
Explanation: The pairs with exactly one prime number on the path between them are:
- (1, 2) since the path from 1 to 2 contains prime number 2.
- (1, 3) since the path from 1 to 3 contains prime number 3.
- (1, 4) since the path from 1 to 4 contains prime number 2.
- (2, 4) since the path from 2 to 4 contains prime number 2.
It can be shown that there are only 4 valid paths.
Example 2:
Input: n = 6, edges = [[1,2],[1,3],[2,4],[3,5],[3,6]]
Output: 6
Explanation: The pairs with exactly one prime number on the path between them are:
- (1, 2) since the path from 1 to 2 contains prime number 2.
- (1, 3) since the path from 1 to 3 contains prime number 3.
- (1, 4) since the path from 1 to 4 contains prime number 2.
- (1, 6) since the path from 1 to 6 contains prime number 3.
- (2, 4) since the path from 2 to 4 contains prime number 2.
- (3, 6) since the path from 3 to 6 contains prime number 3.
It can be shown that there are only 6 valid paths.
Constraints:
1 <= n <= 105
edges.length == n - 1
edges[i].length == 2
1 <= ui, vi <= n
- The input is generated such that
edges
represent a valid tree.
Solutions#
Solution 1: Preprocessing + Union-Find + Enumeration#
We can preprocess to get all the prime numbers in $[1, n]$, where $prime[i]$ indicates whether $i$ is a prime number.
Next, we build a graph $g$ based on the two-dimensional integer array, where $g[i]$ represents all the neighbor nodes of node $i$. If both nodes of an edge are not prime numbers, we merge these two nodes into the same connected component.
Then, we enumerate all prime numbers $i$ in the range of $[1, n]$, considering all paths that include $i$.
Since $i$ is already a prime number, if $i$ is an endpoint of the path, we only need to accumulate the sizes of all connected components adjacent to node $i$. If $i$ is a middle point on the path, we need to accumulate the product of the sizes of any two adjacent connected components.
The time complexity is $O(n \times \alpha(n))$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes, and $\alpha$ is the inverse function of the Ackermann function.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
| class UnionFind:
def __init__(self, n):
self.p = list(range(n))
self.size = [1] * n
def find(self, x):
if self.p[x] != x:
self.p[x] = self.find(self.p[x])
return self.p[x]
def union(self, a, b):
pa, pb = self.find(a), self.find(b)
if pa == pb:
return False
if self.size[pa] > self.size[pb]:
self.p[pb] = pa
self.size[pa] += self.size[pb]
else:
self.p[pa] = pb
self.size[pb] += self.size[pa]
return True
mx = 10**5 + 10
prime = [True] * (mx + 1)
prime[0] = prime[1] = False
for i in range(2, mx + 1):
if prime[i]:
for j in range(i * i, mx + 1, i):
prime[j] = False
class Solution:
def countPaths(self, n: int, edges: List[List[int]]) -> int:
g = [[] for _ in range(n + 1)]
uf = UnionFind(n + 1)
for u, v in edges:
g[u].append(v)
g[v].append(u)
if prime[u] + prime[v] == 0:
uf.union(u, v)
ans = 0
for i in range(1, n + 1):
if prime[i]:
t = 0
for j in g[i]:
if not prime[j]:
cnt = uf.size[uf.find(j)]
ans += cnt
ans += t * cnt
t += cnt
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
| class PrimeTable {
private final boolean[] prime;
public PrimeTable(int n) {
prime = new boolean[n + 1];
Arrays.fill(prime, true);
prime[0] = false;
prime[1] = false;
for (int i = 2; i <= n; ++i) {
if (prime[i]) {
for (int j = i + i; j <= n; j += i) {
prime[j] = false;
}
}
}
}
public boolean isPrime(int x) {
return prime[x];
}
}
class UnionFind {
private final int[] p;
private final int[] size;
public UnionFind(int n) {
p = new int[n];
size = new int[n];
for (int i = 0; i < n; ++i) {
p[i] = i;
size[i] = 1;
}
}
public int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
public boolean union(int a, int b) {
int pa = find(a), pb = find(b);
if (pa == pb) {
return false;
}
if (size[pa] > size[pb]) {
p[pb] = pa;
size[pa] += size[pb];
} else {
p[pa] = pb;
size[pb] += size[pa];
}
return true;
}
public int size(int x) {
return size[find(x)];
}
}
class Solution {
private static final PrimeTable PT = new PrimeTable(100010);
public long countPaths(int n, int[][] edges) {
List<Integer>[] g = new List[n + 1];
Arrays.setAll(g, i -> new ArrayList<>());
UnionFind uf = new UnionFind(n + 1);
for (int[] e : edges) {
int u = e[0], v = e[1];
g[u].add(v);
g[v].add(u);
if (!PT.isPrime(u) && !PT.isPrime(v)) {
uf.union(u, v);
}
}
long ans = 0;
for (int i = 1; i <= n; ++i) {
if (PT.isPrime(i)) {
long t = 0;
for (int j : g[i]) {
if (!PT.isPrime(j)) {
long cnt = uf.size(j);
ans += cnt;
ans += cnt * t;
t += cnt;
}
}
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
| const int mx = 1e5 + 10;
bool prime[mx + 1];
int init = []() {
for (int i = 2; i <= mx; ++i) prime[i] = true;
for (int i = 2; i <= mx; ++i) {
if (prime[i]) {
for (int j = i + i; j <= mx; j += i) {
prime[j] = false;
}
}
}
return 0;
}();
class UnionFind {
public:
UnionFind(int n) {
p = vector<int>(n);
size = vector<int>(n, 1);
iota(p.begin(), p.end(), 0);
}
bool unite(int a, int b) {
int pa = find(a), pb = find(b);
if (pa == pb) {
return false;
}
if (size[pa] > size[pb]) {
p[pb] = pa;
size[pa] += size[pb];
} else {
p[pa] = pb;
size[pb] += size[pa];
}
return true;
}
int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
int getSize(int x) {
return size[find(x)];
}
private:
vector<int> p, size;
};
class Solution {
public:
long long countPaths(int n, vector<vector<int>>& edges) {
vector<int> g[n + 1];
UnionFind uf(n + 1);
for (auto& e : edges) {
int u = e[0], v = e[1];
g[u].push_back(v);
g[v].push_back(u);
if (!prime[u] && !prime[v]) {
uf.unite(u, v);
}
}
long long ans = 0;
for (int i = 1; i <= n; ++i) {
if (prime[i]) {
long long t = 0;
for (int j : g[i]) {
if (!prime[j]) {
long long cnt = uf.getSize(j);
ans += cnt;
ans += cnt * t;
t += cnt;
}
}
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
| const mx int = 1e5 + 10
var prime [mx]bool
func init() {
for i := 2; i < mx; i++ {
prime[i] = true
}
for i := 2; i < mx; i++ {
if prime[i] {
for j := i + i; j < mx; j += i {
prime[j] = false
}
}
}
}
type unionFind struct {
p, size []int
}
func newUnionFind(n int) *unionFind {
p := make([]int, n)
size := make([]int, n)
for i := range p {
p[i] = i
size[i] = 1
}
return &unionFind{p, size}
}
func (uf *unionFind) find(x int) int {
if uf.p[x] != x {
uf.p[x] = uf.find(uf.p[x])
}
return uf.p[x]
}
func (uf *unionFind) union(a, b int) bool {
pa, pb := uf.find(a), uf.find(b)
if pa == pb {
return false
}
if uf.size[pa] > uf.size[pb] {
uf.p[pb] = pa
uf.size[pa] += uf.size[pb]
} else {
uf.p[pa] = pb
uf.size[pb] += uf.size[pa]
}
return true
}
func (uf *unionFind) getSize(x int) int {
return uf.size[uf.find(x)]
}
func countPaths(n int, edges [][]int) (ans int64) {
uf := newUnionFind(n + 1)
g := make([][]int, n+1)
for _, e := range edges {
u, v := e[0], e[1]
g[u] = append(g[u], v)
g[v] = append(g[v], u)
if !prime[u] && !prime[v] {
uf.union(u, v)
}
}
for i := 1; i <= n; i++ {
if prime[i] {
t := 0
for _, j := range g[i] {
if !prime[j] {
cnt := uf.getSize(j)
ans += int64(cnt + cnt*t)
t += cnt
}
}
}
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
| const mx = 100010;
const prime = Array(mx).fill(true);
prime[0] = prime[1] = false;
for (let i = 2; i <= mx; ++i) {
if (prime[i]) {
for (let j = i + i; j <= mx; j += i) {
prime[j] = false;
}
}
}
class UnionFind {
p: number[];
size: number[];
constructor(n: number) {
this.p = Array(n)
.fill(0)
.map((_, i) => i);
this.size = Array(n).fill(1);
}
find(x: number): number {
if (this.p[x] !== x) {
this.p[x] = this.find(this.p[x]);
}
return this.p[x];
}
union(a: number, b: number): boolean {
const [pa, pb] = [this.find(a), this.find(b)];
if (pa === pb) {
return false;
}
if (this.size[pa] > this.size[pb]) {
this.p[pb] = pa;
this.size[pa] += this.size[pb];
} else {
this.p[pa] = pb;
this.size[pb] += this.size[pa];
}
return true;
}
getSize(x: number): number {
return this.size[this.find(x)];
}
}
function countPaths(n: number, edges: number[][]): number {
const uf = new UnionFind(n + 1);
const g: number[][] = Array(n + 1)
.fill(0)
.map(() => []);
for (const [u, v] of edges) {
g[u].push(v);
g[v].push(u);
if (!prime[u] && !prime[v]) {
uf.union(u, v);
}
}
let ans = 0;
for (let i = 1; i <= n; ++i) {
if (prime[i]) {
let t = 0;
for (let j of g[i]) {
if (!prime[j]) {
const cnt = uf.getSize(j);
ans += cnt + t * cnt;
t += cnt;
}
}
}
}
return ans;
}
|
Solution 2#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
| class Solution:
def countPaths(self, n: int, edges: List[List[int]]) -> int:
def mul(x, y):
return x * y
def dfs(x, f, con, prime, r):
v = [1 - prime[x], prime[x]]
for y in con[x]:
if y == f:
continue
p = dfs(y, x, con, prime, r)
r[0] += mul(p[0], v[1]) + mul(p[1], v[0])
if prime[x]:
v[1] += p[0]
else:
v[0] += p[0]
v[1] += p[1]
return v
prime = [True] * (n + 1)
prime[1] = False
all_primes = []
for i in range(2, n + 1):
if prime[i]:
all_primes.append(i)
for x in all_primes:
temp = i * x
if temp > n:
break
prime[temp] = False
if i % x == 0:
break
con = [[] for _ in range(n + 1)]
for e in edges:
con[e[0]].append(e[1])
con[e[1]].append(e[0])
r = [0]
dfs(1, 0, con, prime, r)
return r[0]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
| class Solution {
public long countPaths(int n, int[][] edges) {
List<Boolean> prime = new ArrayList<>(n + 1);
for (int i = 0; i <= n; ++i) {
prime.add(true);
}
prime.set(1, false);
List<Integer> all = new ArrayList<>();
for (int i = 2; i <= n; ++i) {
if (prime.get(i)) {
all.add(i);
}
for (int x : all) {
int temp = i * x;
if (temp > n) {
break;
}
prime.set(temp, false);
if (i % x == 0) {
break;
}
}
}
List<List<Integer>> con = new ArrayList<>(n + 1);
for (int i = 0; i <= n; ++i) {
con.add(new ArrayList<>());
}
for (int[] e : edges) {
con.get(e[0]).add(e[1]);
con.get(e[1]).add(e[0]);
}
long[] r = {0};
dfs(1, 0, con, prime, r);
return r[0];
}
private long mul(long x, long y) {
return x * y;
}
private class Pair {
int first;
int second;
Pair(int first, int second) {
this.first = first;
this.second = second;
}
}
private Pair dfs(int x, int f, List<List<Integer>> con, List<Boolean> prime, long[] r) {
Pair v = new Pair(!prime.get(x) ? 1 : 0, prime.get(x) ? 1 : 0);
for (int y : con.get(x)) {
if (y == f) continue;
Pair p = dfs(y, x, con, prime, r);
r[0] += mul(p.first, v.second) + mul(p.second, v.first);
if (prime.get(x)) {
v.second += p.first;
} else {
v.first += p.first;
v.second += p.second;
}
}
return v;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
| class Solution {
long long mul(long long x, long long y) {
return x * y;
}
pair<int, int> dfs(int x, int f, const vector<vector<int>>& con, const vector<bool>& prime, long long& r) {
pair<int, int> v = {!prime[x], prime[x]};
for (int y : con[x]) {
if (y == f) continue;
const auto& p = dfs(y, x, con, prime, r);
r += mul(p.first, v.second) + mul(p.second, v.first);
if (prime[x]) {
v.second += p.first;
} else {
v.first += p.first;
v.second += p.second;
}
}
return v;
}
public:
long long countPaths(int n, vector<vector<int>>& edges) {
vector<bool> prime(n + 1, true);
prime[1] = false;
vector<int> all;
for (int i = 2; i <= n; ++i) {
if (prime[i]) {
all.push_back(i);
}
for (int x : all) {
const int temp = i * x;
if (temp > n) {
break;
}
prime[temp] = false;
if (i % x == 0) {
break;
}
}
}
vector<vector<int>> con(n + 1);
for (const auto& e : edges) {
con[e[0]].push_back(e[1]);
con[e[1]].push_back(e[0]);
}
long long r = 0;
dfs(1, 0, con, prime, r);
return r;
}
};
|