1559. Detect Cycles in 2D Grid

Description

Given a 2D array of characters grid of size m x n, you need to find if there exists any cycle consisting of the same value in grid.

A cycle is a path of length 4 or more in the grid that starts and ends at the same cell. From a given cell, you can move to one of the cells adjacent to it - in one of the four directions (up, down, left, or right), if it has the same value of the current cell.

Also, you cannot move to the cell that you visited in your last move. For example, the cycle (1, 1) -> (1, 2) -> (1, 1) is invalid because from (1, 2) we visited (1, 1) which was the last visited cell.

Return true if any cycle of the same value exists in grid, otherwise, return false.

 

Example 1:

Input: grid = [["a","a","a","a"],["a","b","b","a"],["a","b","b","a"],["a","a","a","a"]]
Output: true
Explanation: There are two valid cycles shown in different colors in the image below:

Example 2:

Input: grid = [["c","c","c","a"],["c","d","c","c"],["c","c","e","c"],["f","c","c","c"]]
Output: true
Explanation: There is only one valid cycle highlighted in the image below:

Example 3:

Input: grid = [["a","b","b"],["b","z","b"],["b","b","a"]]
Output: false

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 500
  • grid consists only of lowercase English letters.

Solutions

Solution 1

Python Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution:
    def containsCycle(self, grid: List[List[str]]) -> bool:
        def find(x):
            if p[x] != x:
                p[x] = find(p[x])
            return p[x]

        m, n = len(grid), len(grid[0])
        p = list(range(m * n))
        for i in range(m):
            for j in range(n):
                for a, b in [[0, 1], [1, 0]]:
                    x, y = i + a, j + b
                    if x < m and y < n and grid[x][y] == grid[i][j]:
                        if find(x * n + y) == find(i * n + j):
                            return True
                        p[find(x * n + y)] = find(i * n + j)
        return False

Java Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
class Solution {
    private int[] p;

    public boolean containsCycle(char[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        p = new int[m * n];
        for (int i = 0; i < p.length; ++i) {
            p[i] = i;
        }
        int[] dirs = {0, 1, 0};
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                for (int k = 0; k < 2; ++k) {
                    int x = i + dirs[k];
                    int y = j + dirs[k + 1];
                    if (x < m && y < n && grid[i][j] == grid[x][y]) {
                        if (find(x * n + y) == find(i * n + j)) {
                            return true;
                        }
                        p[find(x * n + y)] = find(i * n + j);
                    }
                }
            }
        }
        return false;
    }

    private int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }
}

C++ Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class Solution {
public:
    vector<int> p;

    bool containsCycle(vector<vector<char>>& grid) {
        int m = grid.size(), n = grid[0].size();
        p.resize(m * n);
        for (int i = 0; i < p.size(); ++i) p[i] = i;
        vector<int> dirs = {0, 1, 0};
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                for (int k = 0; k < 2; ++k) {
                    int x = i + dirs[k], y = j + dirs[k + 1];
                    if (x < m && y < n && grid[x][y] == grid[i][j]) {
                        if (find(x * n + y) == find(i * n + j)) return 1;
                        p[find(x * n + y)] = find(i * n + j);
                    }
                }
            }
        }
        return 0;
    }

    int find(int x) {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }
};

Go Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
func containsCycle(grid [][]byte) bool {
	m, n := len(grid), len(grid[0])
	p := make([]int, m*n)
	for i := range p {
		p[i] = i
	}
	var find func(x int) int
	find = func(x int) int {
		if p[x] != x {
			p[x] = find(p[x])
		}
		return p[x]
	}
	dirs := []int{1, 0, 1}
	for i := 0; i < m; i++ {
		for j := 0; j < n; j++ {
			for k := 0; k < 2; k++ {
				x, y := i+dirs[k], j+dirs[k+1]
				if x < m && y < n && grid[x][y] == grid[i][j] {
					if find(x*n+y) == find(i*n+j) {
						return true
					}
					p[find(x*n+y)] = find(i*n + j)
				}
			}
		}
	}
	return false
}

Rust Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
impl Solution {
    #[allow(dead_code)]
    pub fn contains_cycle(grid: Vec<Vec<char>>) -> bool {
        let n = grid.len();
        let m = grid[0].len();
        let mut d_set: Vec<usize> = vec![0; n * m];

        // Initialize the disjoint set
        for i in 0..n * m {
            d_set[i] = i;
        }

        // Traverse the grid
        for i in 0..n {
            for j in 0..m {
                if i + 1 < n && grid[i + 1][j] == grid[i][j] {
                    // Check the below cell
                    let p_curr = Self::find(i * m + j, &mut d_set);
                    let p_below = Self::find((i + 1) * m + j, &mut d_set);
                    if p_curr == p_below {
                        return true;
                    }
                    // Otherwise, union the two cells
                    Self::union(p_curr, p_below, &mut d_set);
                }
                // Same to the right cell
                if j + 1 < m && grid[i][j + 1] == grid[i][j] {
                    let p_curr = Self::find(i * m + j, &mut d_set);
                    let p_right = Self::find(i * m + (j + 1), &mut d_set);
                    if p_curr == p_right {
                        return true;
                    }
                    // Otherwise, union the two cells
                    Self::union(p_curr, p_right, &mut d_set);
                }
            }
        }

        false
    }

    #[allow(dead_code)]
    fn find(x: usize, d_set: &mut Vec<usize>) -> usize {
        if d_set[x] != x {
            d_set[x] = Self::find(d_set[x], d_set);
        }
        d_set[x]
    }

    #[allow(dead_code)]
    fn union(x: usize, y: usize, d_set: &mut Vec<usize>) {
        let p_x = Self::find(x, d_set);
        let p_y = Self::find(y, d_set);
        d_set[p_x] = p_y;
    }
}

JavaScript Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/**
 * @param {character[][]} grid
 * @return {boolean}
 */
var containsCycle = function (grid) {
    const m = grid.length;
    const n = grid[0].length;
    let p = Array.from({ length: m * n }, (_, i) => i);
    function find(x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }
    const dirs = [0, 1, 0];
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            for (let k = 0; k < 2; ++k) {
                const x = i + dirs[k];
                const y = j + dirs[k + 1];
                if (x < m && y < n && grid[x][y] == grid[i][j]) {
                    if (find(x * n + y) == find(i * n + j)) {
                        return true;
                    }
                    p[find(x * n + y)] = find(i * n + j);
                }
            }
        }
    }
    return false;
};