2711. Difference of Number of Distinct Values on Diagonals

Description

Given a 0-indexed 2D grid of size m x n, you should find the matrix answer of size m x n.

The value of each cell (r, c) of the matrix answer is calculated in the following way:

  • Let topLeft[r][c] be the number of distinct values in the top-left diagonal of the cell (r, c) in the matrix grid.
  • Let bottomRight[r][c] be the number of distinct values in the bottom-right diagonal of the cell (r, c) in the matrix grid.

Then answer[r][c] = |topLeft[r][c] - bottomRight[r][c]|.

Return the matrix answer.

A matrix diagonal is a diagonal line of cells starting from some cell in either the topmost row or leftmost column and going in the bottom-right direction until reaching the matrix's end.

A cell (r1, c1) belongs to the top-left diagonal of the cell (r, c), if both belong to the same diagonal and r1 < r. Similarly is defined bottom-right diagonal.

 

Example 1:


Input: grid = [[1,2,3],[3,1,5],[3,2,1]]
Output: [[1,1,0],[1,0,1],[0,1,1]]
Explanation: The 1st diagram denotes the initial grid. 
The 2nd diagram denotes a grid for cell (0,0), where blue-colored cells are cells on its bottom-right diagonal.
The 3rd diagram denotes a grid for cell (1,2), where red-colored cells are cells on its top-left diagonal.
The 4th diagram denotes a grid for cell (1,1), where blue-colored cells are cells on its bottom-right diagonal and red-colored cells are cells on its top-left diagonal.
- The cell (0,0) contains [1,1] on its bottom-right diagonal and [] on its top-left diagonal. The answer is |1 - 0| = 1.
- The cell (1,2) contains [] on its bottom-right diagonal and [2] on its top-left diagonal. The answer is |0 - 1| = 1.
- The cell (1,1) contains [1] on its bottom-right diagonal and [1] on its top-left diagonal. The answer is |1 - 1| = 0.
The answers of other cells are similarly calculated.

Example 2:

Input: grid = [[1]]
Output: [[0]]
Explanation: - The cell (0,0) contains [] on its bottom-right diagonal and [] on its top-left diagonal. The answer is |0 - 0| = 0.

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n, grid[i][j] <= 50

Solutions

Solution 1

Python Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class Solution:
    def differenceOfDistinctValues(self, grid: List[List[int]]) -> List[List[int]]:
        m, n = len(grid), len(grid[0])
        ans = [[0] * n for _ in range(m)]
        for i in range(m):
            for j in range(n):
                x, y = i, j
                s = set()
                while x and y:
                    x, y = x - 1, y - 1
                    s.add(grid[x][y])
                tl = len(s)
                x, y = i, j
                s = set()
                while x + 1 < m and y + 1 < n:
                    x, y = x + 1, y + 1
                    s.add(grid[x][y])
                br = len(s)
                ans[i][j] = abs(tl - br)
        return ans

Java Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
    public int[][] differenceOfDistinctValues(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        int[][] ans = new int[m][n];
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                int x = i, y = j;
                Set<Integer> s = new HashSet<>();
                while (x > 0 && y > 0) {
                    s.add(grid[--x][--y]);
                }
                int tl = s.size();
                x = i;
                y = j;
                s.clear();
                while (x < m - 1 && y < n - 1) {
                    s.add(grid[++x][++y]);
                }
                int br = s.size();
                ans[i][j] = Math.abs(tl - br);
            }
        }
        return ans;
    }
}

C++ Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
public:
    vector<vector<int>> differenceOfDistinctValues(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size();
        vector<vector<int>> ans(m, vector<int>(n));
        for (int i = 0; i < m; ++i) {
            for (int j = 0; j < n; ++j) {
                int x = i, y = j;
                unordered_set<int> s;
                while (x > 0 && y > 0) {
                    s.insert(grid[--x][--y]);
                }
                int tl = s.size();
                x = i;
                y = j;
                s.clear();
                while (x < m - 1 && y < n - 1) {
                    s.insert(grid[++x][++y]);
                }
                int br = s.size();
                ans[i][j] = abs(tl - br);
            }
        }
        return ans;
    }
};

Go Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
func differenceOfDistinctValues(grid [][]int) [][]int {
	m, n := len(grid), len(grid[0])
	ans := make([][]int, m)
	for i := range grid {
		ans[i] = make([]int, n)
		for j := range grid[i] {
			x, y := i, j
			s := map[int]bool{}
			for x > 0 && y > 0 {
				x, y = x-1, y-1
				s[grid[x][y]] = true
			}
			tl := len(s)
			x, y = i, j
			s = map[int]bool{}
			for x+1 < m && y+1 < n {
				x, y = x+1, y+1
				s[grid[x][y]] = true
			}
			br := len(s)
			ans[i][j] = abs(tl - br)
		}
	}
	return ans
}

func abs(x int) int {
	if x < 0 {
		return -x
	}
	return x
}

TypeScript Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
function differenceOfDistinctValues(grid: number[][]): number[][] {
    const m = grid.length;
    const n = grid[0].length;
    const ans: number[][] = Array(m)
        .fill(0)
        .map(() => Array(n).fill(0));
    for (let i = 0; i < m; ++i) {
        for (let j = 0; j < n; ++j) {
            let [x, y] = [i, j];
            const s = new Set<number>();
            while (x && y) {
                s.add(grid[--x][--y]);
            }
            const tl = s.size;
            [x, y] = [i, j];
            s.clear();
            while (x + 1 < m && y + 1 < n) {
                s.add(grid[++x][++y]);
            }
            const br = s.size;
            ans[i][j] = Math.abs(tl - br);
        }
    }
    return ans;
}