Description#
You have an infinite number of stacks arranged in a row and numbered (left to right) from 0
, each of the stacks has the same maximum capacity.
Implement the DinnerPlates
class:
DinnerPlates(int capacity)
Initializes the object with the maximum capacity of the stacks capacity
.void push(int val)
Pushes the given integer val
into the leftmost stack with a size less than capacity
.int pop()
Returns the value at the top of the rightmost non-empty stack and removes it from that stack, and returns -1
if all the stacks are empty.int popAtStack(int index)
Returns the value at the top of the stack with the given index index
and removes it from that stack or returns -1
if the stack with that given index is empty.
Example 1:
Input
["DinnerPlates", "push", "push", "push", "push", "push", "popAtStack", "push", "push", "popAtStack", "popAtStack", "pop", "pop", "pop", "pop", "pop"]
[[2], [1], [2], [3], [4], [5], [0], [20], [21], [0], [2], [], [], [], [], []]
Output
[null, null, null, null, null, null, 2, null, null, 20, 21, 5, 4, 3, 1, -1]
Explanation:
DinnerPlates D = DinnerPlates(2); // Initialize with capacity = 2
D.push(1);
D.push(2);
D.push(3);
D.push(4);
D.push(5); // The stacks are now: 2 4
1 3 5
﹈ ﹈ ﹈
D.popAtStack(0); // Returns 2. The stacks are now: 4
1 3 5
﹈ ﹈ ﹈
D.push(20); // The stacks are now: 20 4
1 3 5
﹈ ﹈ ﹈
D.push(21); // The stacks are now: 20 4 21
1 3 5
﹈ ﹈ ﹈
D.popAtStack(0); // Returns 20. The stacks are now: 4 21
1 3 5
﹈ ﹈ ﹈
D.popAtStack(2); // Returns 21. The stacks are now: 4
1 3 5
﹈ ﹈ ﹈
D.pop() // Returns 5. The stacks are now: 4
1 3
﹈ ﹈
D.pop() // Returns 4. The stacks are now: 1 3
﹈ ﹈
D.pop() // Returns 3. The stacks are now: 1
﹈
D.pop() // Returns 1. There are no stacks.
D.pop() // Returns -1. There are still no stacks.
Constraints:
1 <= capacity <= 2 * 104
1 <= val <= 2 * 104
0 <= index <= 105
- At most
2 * 105
calls will be made to push
, pop
, and popAtStack
.
Solutions#
Solution 1: Stack Array + Ordered Set#
We define the following data structures or variables:
capacity
: The capacity of each stack;stacks
: Stack array, used to store all stacks, each with a maximum capacity of capacity
;not_full
: Ordered set, used to store the indices of all non-full stacks in the stack array.
For the push(val)
operation:
- We first check if
not_full
is empty. If it is, it means there are no non-full stacks, so we need to create a new stack and push val
into it. At this point, we check if the capacity capacity
is greater than $1$. If it is, we add the index of this stack to not_full
. - If
not_full
is not empty, it means there are non-full stacks. We take out the smallest index index
from not_full
, and push val
into stacks[index]
. At this point, if the capacity of stacks[index]
equals capacity
, we remove index
from not_full
.
For the popAtStack(index)
operation:
- We first check if
index
is within the index range of stacks
. If it is not, we directly return $-1$. If stacks[index]
is empty, we also directly return $-1$. - If
stacks[index]
is not empty, we pop the top element val
from stacks[index]
. If index
equals the length of stacks
minus $1$, it means stacks[index]
is the last stack. If it is empty, we loop to remove the index of the last stack from not_full
, and remove the last stack from the stack array stacks
, until the last stack is not empty, or the stack array stacks
is empty. Otherwise, if stacks[index]
is not the last stack, we add index
to not_full
. - Finally, return
val
.
For the pop()
operation:
- We directly call
popAtStack(stacks.length - 1)
.
The time complexity is $(n \times \log n)$, and the space complexity is $O(n)$. Here, $n$ is the number of operations.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
| from sortedcontainers import SortedSet
class DinnerPlates:
def __init__(self, capacity: int):
self.capacity = capacity
self.stacks = []
self.not_full = SortedSet()
def push(self, val: int) -> None:
if not self.not_full:
self.stacks.append([val])
if self.capacity > 1:
self.not_full.add(len(self.stacks) - 1)
else:
index = self.not_full[0]
self.stacks[index].append(val)
if len(self.stacks[index]) == self.capacity:
self.not_full.discard(index)
def pop(self) -> int:
return self.popAtStack(len(self.stacks) - 1)
def popAtStack(self, index: int) -> int:
if index < 0 or index >= len(self.stacks) or not self.stacks[index]:
return -1
val = self.stacks[index].pop()
if index == len(self.stacks) - 1 and not self.stacks[-1]:
while self.stacks and not self.stacks[-1]:
self.not_full.discard(len(self.stacks) - 1)
self.stacks.pop()
else:
self.not_full.add(index)
return val
# Your DinnerPlates object will be instantiated and called as such:
# obj = DinnerPlates(capacity)
# obj.push(val)
# param_2 = obj.pop()
# param_3 = obj.popAtStack(index)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
| class DinnerPlates {
private int capacity;
private List<Deque<Integer>> stacks = new ArrayList<>();
private TreeSet<Integer> notFull = new TreeSet<>();
public DinnerPlates(int capacity) {
this.capacity = capacity;
}
public void push(int val) {
if (notFull.isEmpty()) {
stacks.add(new ArrayDeque<>());
stacks.get(stacks.size() - 1).push(val);
if (capacity > 1) {
notFull.add(stacks.size() - 1);
}
} else {
int index = notFull.first();
stacks.get(index).push(val);
if (stacks.get(index).size() == capacity) {
notFull.pollFirst();
}
}
}
public int pop() {
return popAtStack(stacks.size() - 1);
}
public int popAtStack(int index) {
if (index < 0 || index >= stacks.size() || stacks.get(index).isEmpty()) {
return -1;
}
int val = stacks.get(index).pop();
if (index == stacks.size() - 1 && stacks.get(stacks.size() - 1).isEmpty()) {
while (!stacks.isEmpty() && stacks.get(stacks.size() - 1).isEmpty()) {
notFull.remove(stacks.size() - 1);
stacks.remove(stacks.size() - 1);
}
} else {
notFull.add(index);
}
return val;
}
}
/**
* Your DinnerPlates object will be instantiated and called as such:
* DinnerPlates obj = new DinnerPlates(capacity);
* obj.push(val);
* int param_2 = obj.pop();
* int param_3 = obj.popAtStack(index);
*/
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
| class DinnerPlates {
public:
DinnerPlates(int capacity) {
this->capacity = capacity;
}
void push(int val) {
if (notFull.empty()) {
stacks.emplace_back(stack<int>());
stacks.back().push(val);
if (capacity > 1) {
notFull.insert(stacks.size() - 1);
}
} else {
int index = *notFull.begin();
stacks[index].push(val);
if (stacks[index].size() == capacity) {
notFull.erase(index);
}
}
}
int pop() {
return popAtStack(stacks.size() - 1);
}
int popAtStack(int index) {
if (index < 0 || index >= stacks.size() || stacks[index].empty()) {
return -1;
}
int val = stacks[index].top();
stacks[index].pop();
if (index == stacks.size() - 1 && stacks[index].empty()) {
while (!stacks.empty() && stacks.back().empty()) {
notFull.erase(stacks.size() - 1);
stacks.pop_back();
}
} else {
notFull.insert(index);
}
return val;
}
private:
int capacity;
vector<stack<int>> stacks;
set<int> notFull;
};
/**
* Your DinnerPlates object will be instantiated and called as such:
* DinnerPlates* obj = new DinnerPlates(capacity);
* obj->push(val);
* int param_2 = obj->pop();
* int param_3 = obj->popAtStack(index);
*/
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
| type DinnerPlates struct {
capacity int
stacks [][]int
notFull *redblacktree.Tree
}
func Constructor(capacity int) DinnerPlates {
return DinnerPlates{capacity: capacity, notFull: redblacktree.NewWithIntComparator()}
}
func (this *DinnerPlates) Push(val int) {
if this.notFull.Size() == 0 {
this.stacks = append(this.stacks, []int{val})
if this.capacity > 1 {
this.notFull.Put(len(this.stacks)-1, nil)
}
} else {
index, _ := this.notFull.Left().Key.(int)
this.stacks[index] = append(this.stacks[index], val)
if len(this.stacks[index]) == this.capacity {
this.notFull.Remove(index)
}
}
}
func (this *DinnerPlates) Pop() int {
return this.PopAtStack(len(this.stacks) - 1)
}
func (this *DinnerPlates) PopAtStack(index int) int {
if index < 0 || index >= len(this.stacks) || len(this.stacks[index]) == 0 {
return -1
}
val := this.stacks[index][len(this.stacks[index])-1]
this.stacks[index] = this.stacks[index][:len(this.stacks[index])-1]
if index == len(this.stacks)-1 && len(this.stacks[index]) == 0 {
for len(this.stacks) > 0 && len(this.stacks[len(this.stacks)-1]) == 0 {
this.notFull.Remove(len(this.stacks) - 1)
this.stacks = this.stacks[:len(this.stacks)-1]
}
} else {
this.notFull.Put(index, nil)
}
return val
}
/**
* Your DinnerPlates object will be instantiated and called as such:
* obj := Constructor(capacity);
* obj.Push(val);
* param_2 := obj.Pop();
* param_3 := obj.PopAtStack(index);
*/
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
| class DinnerPlates {
capacity: number;
stacks: number[][];
notFull: TreeSet<number>;
constructor(capacity: number) {
this.capacity = capacity;
this.stacks = [];
this.notFull = new TreeSet<number>();
}
push(val: number): void {
if (this.notFull.size() === 0) {
this.stacks.push([val]);
if (this.capacity > 1) {
this.notFull.add(this.stacks.length - 1);
}
} else {
const index = this.notFull.first()!;
this.stacks[index].push(val);
if (this.stacks[index].length === this.capacity) {
this.notFull.delete(index);
}
}
}
pop(): number {
return this.popAtStack(this.stacks.length - 1);
}
popAtStack(index: number): number {
if (index < 0 || index >= this.stacks.length || this.stacks[index].length === 0) {
return -1;
}
const val = this.stacks[index].pop()!;
if (index === this.stacks.length - 1 && this.stacks[index].length === 0) {
while (this.stacks.length > 0 && this.stacks[this.stacks.length - 1].length === 0) {
this.notFull.delete(this.stacks.length - 1);
this.stacks.pop();
}
} else {
this.notFull.add(index);
}
return val;
}
}
type Compare<T> = (lhs: T, rhs: T) => number;
class RBTreeNode<T = number> {
data: T;
count: number;
left: RBTreeNode<T> | null;
right: RBTreeNode<T> | null;
parent: RBTreeNode<T> | null;
color: number;
constructor(data: T) {
this.data = data;
this.left = this.right = this.parent = null;
this.color = 0;
this.count = 1;
}
sibling(): RBTreeNode<T> | null {
if (!this.parent) return null; // sibling null if no parent
return this.isOnLeft() ? this.parent.right : this.parent.left;
}
isOnLeft(): boolean {
return this === this.parent!.left;
}
hasRedChild(): boolean {
return (
Boolean(this.left && this.left.color === 0) ||
Boolean(this.right && this.right.color === 0)
);
}
}
class RBTree<T> {
root: RBTreeNode<T> | null;
lt: (l: T, r: T) => boolean;
constructor(compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0)) {
this.root = null;
this.lt = (l: T, r: T) => compare(l, r) < 0;
}
rotateLeft(pt: RBTreeNode<T>): void {
const right = pt.right!;
pt.right = right.left;
if (pt.right) pt.right.parent = pt;
right.parent = pt.parent;
if (!pt.parent) this.root = right;
else if (pt === pt.parent.left) pt.parent.left = right;
else pt.parent.right = right;
right.left = pt;
pt.parent = right;
}
rotateRight(pt: RBTreeNode<T>): void {
const left = pt.left!;
pt.left = left.right;
if (pt.left) pt.left.parent = pt;
left.parent = pt.parent;
if (!pt.parent) this.root = left;
else if (pt === pt.parent.left) pt.parent.left = left;
else pt.parent.right = left;
left.right = pt;
pt.parent = left;
}
swapColor(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
const tmp = p1.color;
p1.color = p2.color;
p2.color = tmp;
}
swapData(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
const tmp = p1.data;
p1.data = p2.data;
p2.data = tmp;
}
fixAfterInsert(pt: RBTreeNode<T>): void {
let parent = null;
let grandParent = null;
while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) {
parent = pt.parent;
grandParent = pt.parent.parent;
/* Case : A
Parent of pt is left child of Grand-parent of pt */
if (parent === grandParent?.left) {
const uncle = grandParent.right;
/* Case : 1
The uncle of pt is also red
Only Recoloring required */
if (uncle && uncle.color === 0) {
grandParent.color = 0;
parent.color = 1;
uncle.color = 1;
pt = grandParent;
} else {
/* Case : 2
pt is right child of its parent
Left-rotation required */
if (pt === parent.right) {
this.rotateLeft(parent);
pt = parent;
parent = pt.parent;
}
/* Case : 3
pt is left child of its parent
Right-rotation required */
this.rotateRight(grandParent);
this.swapColor(parent!, grandParent);
pt = parent!;
}
} else {
/* Case : B
Parent of pt is right child of Grand-parent of pt */
const uncle = grandParent!.left;
/* Case : 1
The uncle of pt is also red
Only Recoloring required */
if (uncle != null && uncle.color === 0) {
grandParent!.color = 0;
parent.color = 1;
uncle.color = 1;
pt = grandParent!;
} else {
/* Case : 2
pt is left child of its parent
Right-rotation required */
if (pt === parent.left) {
this.rotateRight(parent);
pt = parent;
parent = pt.parent;
}
/* Case : 3
pt is right child of its parent
Left-rotation required */
this.rotateLeft(grandParent!);
this.swapColor(parent!, grandParent!);
pt = parent!;
}
}
}
this.root!.color = 1;
}
delete(val: T): boolean {
const node = this.find(val);
if (!node) return false;
node.count--;
if (!node.count) this.deleteNode(node);
return true;
}
deleteAll(val: T): boolean {
const node = this.find(val);
if (!node) return false;
this.deleteNode(node);
return true;
}
deleteNode(v: RBTreeNode<T>): void {
const u = BSTreplace(v);
// True when u and v are both black
const uvBlack = (u === null || u.color === 1) && v.color === 1;
const parent = v.parent!;
if (!u) {
// u is null therefore v is leaf
if (v === this.root) this.root = null;
// v is root, making root null
else {
if (uvBlack) {
// u and v both black
// v is leaf, fix double black at v
this.fixDoubleBlack(v);
} else {
// u or v is red
if (v.sibling()) {
// sibling is not null, make it red"
v.sibling()!.color = 0;
}
}
// delete v from the tree
if (v.isOnLeft()) parent.left = null;
else parent.right = null;
}
return;
}
if (!v.left || !v.right) {
// v has 1 child
if (v === this.root) {
// v is root, assign the value of u to v, and delete u
v.data = u.data;
v.left = v.right = null;
} else {
// Detach v from tree and move u up
if (v.isOnLeft()) parent.left = u;
else parent.right = u;
u.parent = parent;
if (uvBlack) this.fixDoubleBlack(u);
// u and v both black, fix double black at u
else u.color = 1; // u or v red, color u black
}
return;
}
// v has 2 children, swap data with successor and recurse
this.swapData(u, v);
this.deleteNode(u);
// find node that replaces a deleted node in BST
function BSTreplace(x: RBTreeNode<T>): RBTreeNode<T> | null {
// when node have 2 children
if (x.left && x.right) return successor(x.right);
// when leaf
if (!x.left && !x.right) return null;
// when single child
return x.left ?? x.right;
}
// find node that do not have a left child
// in the subtree of the given node
function successor(x: RBTreeNode<T>): RBTreeNode<T> {
let temp = x;
while (temp.left) temp = temp.left;
return temp;
}
}
fixDoubleBlack(x: RBTreeNode<T>): void {
if (x === this.root) return; // Reached root
const sibling = x.sibling();
const parent = x.parent!;
if (!sibling) {
// No sibiling, double black pushed up
this.fixDoubleBlack(parent);
} else {
if (sibling.color === 0) {
// Sibling red
parent.color = 0;
sibling.color = 1;
if (sibling.isOnLeft()) this.rotateRight(parent);
// left case
else this.rotateLeft(parent); // right case
this.fixDoubleBlack(x);
} else {
// Sibling black
if (sibling.hasRedChild()) {
// at least 1 red children
if (sibling.left && sibling.left.color === 0) {
if (sibling.isOnLeft()) {
// left left
sibling.left.color = sibling.color;
sibling.color = parent.color;
this.rotateRight(parent);
} else {
// right left
sibling.left.color = parent.color;
this.rotateRight(sibling);
this.rotateLeft(parent);
}
} else {
if (sibling.isOnLeft()) {
// left right
sibling.right!.color = parent.color;
this.rotateLeft(sibling);
this.rotateRight(parent);
} else {
// right right
sibling.right!.color = sibling.color;
sibling.color = parent.color;
this.rotateLeft(parent);
}
}
parent.color = 1;
} else {
// 2 black children
sibling.color = 0;
if (parent.color === 1) this.fixDoubleBlack(parent);
else parent.color = 1;
}
}
}
}
insert(data: T): boolean {
// search for a position to insert
let parent = this.root;
while (parent) {
if (this.lt(data, parent.data)) {
if (!parent.left) break;
else parent = parent.left;
} else if (this.lt(parent.data, data)) {
if (!parent.right) break;
else parent = parent.right;
} else break;
}
// insert node into parent
const node = new RBTreeNode(data);
if (!parent) this.root = node;
else if (this.lt(node.data, parent.data)) parent.left = node;
else if (this.lt(parent.data, node.data)) parent.right = node;
else {
parent.count++;
return false;
}
node.parent = parent;
this.fixAfterInsert(node);
return true;
}
find(data: T): RBTreeNode<T> | null {
let p = this.root;
while (p) {
if (this.lt(data, p.data)) {
p = p.left;
} else if (this.lt(p.data, data)) {
p = p.right;
} else break;
}
return p ?? null;
}
*inOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
if (!root) return;
for (const v of this.inOrder(root.left!)) yield v;
yield root.data;
for (const v of this.inOrder(root.right!)) yield v;
}
*reverseInOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
if (!root) return;
for (const v of this.reverseInOrder(root.right!)) yield v;
yield root.data;
for (const v of this.reverseInOrder(root.left!)) yield v;
}
}
class TreeSet<T = number> {
_size: number;
tree: RBTree<T>;
compare: Compare<T>;
constructor(
collection: T[] | Compare<T> = [],
compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
) {
if (typeof collection === 'function') {
compare = collection;
collection = [];
}
this._size = 0;
this.compare = compare;
this.tree = new RBTree(compare);
for (const val of collection) this.add(val);
}
size(): number {
return this._size;
}
has(val: T): boolean {
return !!this.tree.find(val);
}
add(val: T): boolean {
const successful = this.tree.insert(val);
this._size += successful ? 1 : 0;
return successful;
}
delete(val: T): boolean {
const deleted = this.tree.deleteAll(val);
this._size -= deleted ? 1 : 0;
return deleted;
}
ceil(val: T): T | undefined {
let p = this.tree.root;
let higher = null;
while (p) {
if (this.compare(p.data, val) >= 0) {
higher = p;
p = p.left;
} else {
p = p.right;
}
}
return higher?.data;
}
floor(val: T): T | undefined {
let p = this.tree.root;
let lower = null;
while (p) {
if (this.compare(val, p.data) >= 0) {
lower = p;
p = p.right;
} else {
p = p.left;
}
}
return lower?.data;
}
higher(val: T): T | undefined {
let p = this.tree.root;
let higher = null;
while (p) {
if (this.compare(val, p.data) < 0) {
higher = p;
p = p.left;
} else {
p = p.right;
}
}
return higher?.data;
}
lower(val: T): T | undefined {
let p = this.tree.root;
let lower = null;
while (p) {
if (this.compare(p.data, val) < 0) {
lower = p;
p = p.right;
} else {
p = p.left;
}
}
return lower?.data;
}
first(): T | undefined {
return this.tree.inOrder().next().value;
}
last(): T | undefined {
return this.tree.reverseInOrder().next().value;
}
shift(): T | undefined {
const first = this.first();
if (first === undefined) return undefined;
this.delete(first);
return first;
}
pop(): T | undefined {
const last = this.last();
if (last === undefined) return undefined;
this.delete(last);
return last;
}
*[Symbol.iterator](): Generator<T, void, void> {
for (const val of this.values()) yield val;
}
*keys(): Generator<T, void, void> {
for (const val of this.values()) yield val;
}
*values(): Generator<T, undefined, void> {
for (const val of this.tree.inOrder()) yield val;
return undefined;
}
/**
* Return a generator for reverse order traversing the set
*/
*rvalues(): Generator<T, undefined, void> {
for (const val of this.tree.reverseInOrder()) yield val;
return undefined;
}
}
/**
* Your DinnerPlates object will be instantiated and called as such:
* var obj = new DinnerPlates(capacity)
* obj.push(val)
* var param_2 = obj.pop()
* var param_3 = obj.popAtStack(index)
*/
|