Description#
You are given a positive integer n
representing the number of nodes in an undirected graph. The nodes are labeled from 1
to n
.
You are also given a 2D integer array edges
, where edges[i] = [ai, bi]
indicates that there is a bidirectional edge between nodes ai
and bi
. Notice that the given graph may be disconnected.
Divide the nodes of the graph into m
groups (1-indexed) such that:
- Each node in the graph belongs to exactly one group.
- For every pair of nodes in the graph that are connected by an edge
[ai, bi]
, if ai
belongs to the group with index x
, and bi
belongs to the group with index y
, then |y - x| = 1
.
Return the maximum number of groups (i.e., maximum m
) into which you can divide the nodes. Return -1
if it is impossible to group the nodes with the given conditions.
Example 1:
Input: n = 6, edges = [[1,2],[1,4],[1,5],[2,6],[2,3],[4,6]]
Output: 4
Explanation: As shown in the image we:
- Add node 5 to the first group.
- Add node 1 to the second group.
- Add nodes 2 and 4 to the third group.
- Add nodes 3 and 6 to the fourth group.
We can see that every edge is satisfied.
It can be shown that that if we create a fifth group and move any node from the third or fourth group to it, at least on of the edges will not be satisfied.
Example 2:
Input: n = 3, edges = [[1,2],[2,3],[3,1]]
Output: -1
Explanation: If we add node 1 to the first group, node 2 to the second group, and node 3 to the third group to satisfy the first two edges, we can see that the third edge will not be satisfied.
It can be shown that no grouping is possible.
Constraints:
1 <= n <= 500
1 <= edges.length <= 104
edges[i].length == 2
1 <= ai, bi <= n
ai != bi
- There is at most one edge between any pair of vertices.
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
| class Solution:
def magnificentSets(self, n: int, edges: List[List[int]]) -> int:
def dfs(i):
arr.append(i)
vis[i] = True
for j in g[i]:
if not vis[j]:
dfs(j)
def bfs(i):
ans = 1
dist = [inf] * (n + 1)
dist[i] = 1
q = deque([i])
while q:
i = q.popleft()
for j in g[i]:
if dist[j] == inf:
ans = dist[j] = dist[i] + 1
q.append(j)
for i in arr:
if dist[i] == inf:
ans += 1
dist[i] = ans
for i in arr:
for j in g[i]:
if abs(dist[i] - dist[j]) != 1:
return -1
return ans
g = defaultdict(list)
for a, b in edges:
g[a].append(b)
g[b].append(a)
vis = [False] * (n + 1)
ans = 0
for i in range(1, n + 1):
if not vis[i]:
arr = []
dfs(i)
t = max(bfs(v) for v in arr)
if t == -1:
return -1
ans += t
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
| class Solution {
private List<Integer>[] g;
private List<Integer> arr = new ArrayList<>();
private boolean[] vis;
private int n;
public int magnificentSets(int n, int[][] edges) {
g = new List[n + 1];
this.n = n;
Arrays.setAll(g, k -> new ArrayList<>());
for (var e : edges) {
int a = e[0], b = e[1];
g[a].add(b);
g[b].add(a);
}
vis = new boolean[n + 1];
int ans = 0;
for (int i = 1; i <= n; ++i) {
if (!vis[i]) {
dfs(i);
int t = -1;
for (int v : arr) {
t = Math.max(t, bfs(v));
}
if (t == -1) {
return -1;
}
ans += t;
arr.clear();
}
}
return ans;
}
private int bfs(int k) {
int[] dist = new int[n + 1];
Arrays.fill(dist, 1 << 30);
dist[k] = 1;
Deque<Integer> q = new ArrayDeque<>();
q.offer(k);
int ans = 1;
while (!q.isEmpty()) {
int i = q.pollFirst();
for (int j : g[i]) {
if (dist[j] == 1 << 30) {
dist[j] = dist[i] + 1;
ans = dist[j];
q.offer(j);
}
}
}
for (int i : arr) {
if (dist[i] == 1 << 30) {
dist[i] = ++ans;
}
}
for (int i : arr) {
for (int j : g[i]) {
if (Math.abs(dist[i] - dist[j]) != 1) {
return -1;
}
}
}
return ans;
}
private void dfs(int i) {
arr.add(i);
vis[i] = true;
for (int j : g[i]) {
if (!vis[j]) {
dfs(j);
}
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
| class Solution {
public:
int magnificentSets(int n, vector<vector<int>>& edges) {
vector<vector<int>> g(n + 1);
for (auto& e : edges) {
int a = e[0], b = e[1];
g[a].emplace_back(b);
g[b].emplace_back(a);
}
vector<int> arr;
bool vis[n + 1];
memset(vis, 0, sizeof vis);
int ans = 0;
function<void(int)> dfs = [&](int i) {
arr.emplace_back(i);
vis[i] = true;
for (int& j : g[i]) {
if (!vis[j]) {
dfs(j);
}
}
};
auto bfs = [&](int k) {
int ans = 1;
int dist[n + 1];
memset(dist, 0x3f, sizeof dist);
dist[k] = 1;
queue<int> q{{k}};
while (!q.empty()) {
int i = q.front();
q.pop();
for (int& j : g[i]) {
if (dist[j] == 0x3f3f3f3f) {
ans = dist[j] = dist[i] + 1;
q.push(j);
}
}
}
for (int& i : arr) {
if (dist[i] == 0x3f3f3f3f) {
dist[i] = ++ans;
}
}
for (int& i : arr) {
for (int& j : g[i]) {
if (abs(dist[i] - dist[j]) != 1) {
return -1;
}
}
}
return ans;
};
for (int i = 1; i <= n; ++i) {
if (!vis[i]) {
dfs(i);
int t = -1;
for (int& v : arr) t = max(t, bfs(v));
if (t == -1) return -1;
ans += t;
arr.clear();
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
| func magnificentSets(n int, edges [][]int) int {
g := make([][]int, n+1)
for _, e := range edges {
a, b := e[0], e[1]
g[a] = append(g[a], b)
g[b] = append(g[b], a)
}
arr := []int{}
vis := make([]bool, n+1)
ans := 0
var dfs func(int)
dfs = func(i int) {
arr = append(arr, i)
vis[i] = true
for _, j := range g[i] {
if !vis[j] {
dfs(j)
}
}
}
bfs := func(k int) int {
ans := 1
dist := make([]int, n+1)
for i := range dist {
dist[i] = 1 << 30
}
q := []int{k}
dist[k] = 1
for len(q) > 0 {
i := q[0]
q = q[1:]
for _, j := range g[i] {
if dist[j] == 1<<30 {
dist[j] = dist[i] + 1
ans = dist[j]
q = append(q, j)
}
}
}
for _, i := range arr {
if dist[i] == 1<<30 {
ans++
dist[i] = ans
}
}
for _, i := range arr {
for _, j := range g[i] {
if abs(dist[i]-dist[j]) != 1 {
return -1
}
}
}
return ans
}
for i := 1; i <= n; i++ {
if !vis[i] {
dfs(i)
t := -1
for _, v := range arr {
t = max(t, bfs(v))
}
if t == -1 {
return -1
}
ans += t
arr = []int{}
}
}
return ans
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
| var magnificentSets = function (n, edges) {
const graph = Array.from({ length: n + 1 }, () => new Set());
for (const [u, v] of edges) {
graph[u].add(v);
graph[v].add(u);
}
const hash = new Map();
// 2. BFS
for (let i = 1; i <= n; i++) {
let queue = [i];
const dis = Array(n + 1).fill(0);
dis[i] = 1;
let mx = 1,
mn = n;
while (queue.length) {
let next = [];
for (let u of queue) {
mn = Math.min(mn, u);
for (const v of graph[u]) {
if (!dis[v]) {
dis[v] = dis[u] + 1;
mx = Math.max(mx, dis[v]);
next.push(v);
}
if (Math.abs(dis[u] - dis[v]) != 1) {
return -1;
}
}
}
queue = next;
}
hash.set(mn, Math.max(mx, hash.get(mn) || 0));
}
let ans = 0;
for (const [u, v] of hash) {
ans += v;
}
return ans;
};
|