Description#
You are given a 0-indexed string s
and a dictionary of words dictionary
. You have to break s
into one or more non-overlapping substrings such that each substring is present in dictionary
. There may be some extra characters in s
which are not present in any of the substrings.
Return the minimum number of extra characters left over if you break up s
optimally.
Example 1:
Input: s = "leetscode", dictionary = ["leet","code","leetcode"]
Output: 1
Explanation: We can break s in two substrings: "leet" from index 0 to 3 and "code" from index 5 to 8. There is only 1 unused character (at index 4), so we return 1.
Example 2:
Input: s = "sayhelloworld", dictionary = ["hello","world"]
Output: 3
Explanation: We can break s in two substrings: "hello" from index 3 to 7 and "world" from index 8 to 12. The characters at indices 0, 1, 2 are not used in any substring and thus are considered as extra characters. Hence, we return 3.
Constraints:
1 <= s.length <= 50
1 <= dictionary.length <= 50
1 <= dictionary[i].length <= 50
dictionary[i]
and s
consists of only lowercase English lettersdictionary
contains distinct words
Solutions#
Solution 1: Hash Table + Dynamic Programming#
We can use a hash table $ss$ to record all words in the dictionary, which allows us to quickly determine whether a string is in the dictionary.
Next, we define $f[i]$ to represent the minimum number of extra characters in the first $i$ characters of string $s$, initially $f[0] = 0$.
When $i \ge 1$, the $i$th character $s[i - 1]$ can be an extra character, in which case $f[i] = f[i - 1] + 1$. If there exists an index $j \in [0, i - 1]$ such that $s[j..i)$ is in the hash table $ss$, then we can take $s[j..i)$ as a word, in which case $f[i] = f[j]$.
In summary, we can get the state transition equation:
$$
f[i] = \min { f[i - 1] + 1, \min_{j \in [0, i - 1]} f[j] }
$$
where $i \ge 1$, and $j \in [0, i - 1]$ and $s[j..i)$ is in the hash table $ss$.
The final answer is $f[n]$.
The time complexity is $O(n^3 + L)$, and the space complexity is $O(n + L)$. Here, $n$ is the length of string $s$, and $L$ is the sum of the lengths of all words in the dictionary.
1
2
3
4
5
6
7
8
9
10
11
| class Solution:
def minExtraChar(self, s: str, dictionary: List[str]) -> int:
ss = set(dictionary)
n = len(s)
f = [0] * (n + 1)
for i in range(1, n + 1):
f[i] = f[i - 1] + 1
for j in range(i):
if s[j:i] in ss and f[j] < f[i]:
f[i] = f[j]
return f[n]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| class Solution {
public int minExtraChar(String s, String[] dictionary) {
Set<String> ss = new HashSet<>();
for (String w : dictionary) {
ss.add(w);
}
int n = s.length();
int[] f = new int[n + 1];
f[0] = 0;
for (int i = 1; i <= n; ++i) {
f[i] = f[i - 1] + 1;
for (int j = 0; j < i; ++j) {
if (ss.contains(s.substring(j, i))) {
f[i] = Math.min(f[i], f[j]);
}
}
}
return f[n];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| class Solution {
public:
int minExtraChar(string s, vector<string>& dictionary) {
unordered_set<string> ss(dictionary.begin(), dictionary.end());
int n = s.size();
int f[n + 1];
f[0] = 0;
for (int i = 1; i <= n; ++i) {
f[i] = f[i - 1] + 1;
for (int j = 0; j < i; ++j) {
if (ss.count(s.substr(j, i - j))) {
f[i] = min(f[i], f[j]);
}
}
}
return f[n];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| func minExtraChar(s string, dictionary []string) int {
ss := map[string]bool{}
for _, w := range dictionary {
ss[w] = true
}
n := len(s)
f := make([]int, n+1)
for i := 1; i <= n; i++ {
f[i] = f[i-1] + 1
for j := 0; j < i; j++ {
if ss[s[j:i]] && f[j] < f[i] {
f[i] = f[j]
}
}
}
return f[n]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| function minExtraChar(s: string, dictionary: string[]): number {
const ss = new Set(dictionary);
const n = s.length;
const f = new Array(n + 1).fill(0);
for (let i = 1; i <= n; ++i) {
f[i] = f[i - 1] + 1;
for (let j = 0; j < i; ++j) {
if (ss.has(s.substring(j, i))) {
f[i] = Math.min(f[i], f[j]);
}
}
}
return f[n];
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| use std::collections::HashSet;
impl Solution {
pub fn min_extra_char(s: String, dictionary: Vec<String>) -> i32 {
let ss: HashSet<String> = dictionary.into_iter().collect();
let n = s.len();
let mut f = vec![0; n + 1];
for i in 1..=n {
f[i] = f[i - 1] + 1;
for j in 0..i {
if ss.contains(&s[j..i]) {
f[i] = f[i].min(f[j]);
}
}
}
f[n]
}
}
|
Solution 2: Trie + Dynamic Programming#
We can use a trie to optimize the time complexity of Solution 1.
Specifically, we first insert each word in the dictionary into the trie $root$ in reverse order, then we define $f[i]$ to represent the minimum number of extra characters in the first $i$ characters of string $s$, initially $f[0] = 0$.
When $i \ge 1$, the $i$th character $s[i - 1]$ can be an extra character, in which case $f[i] = f[i - 1] + 1$. We can also enumerate the index $j$ in reverse order in the range $[0..i-1]$, and determine whether $s[j..i)$ is in the trie $root$. If it exists, then we can take $s[j..i)$ as a word, in which case $f[i] = f[j]$.
The time complexity is $O(n^2 + L)$, and the space complexity is $O(n + L \times |\Sigma|)$. Here, $n$ is the length of string $s$, and $L$ is the sum of the lengths of all words in the dictionary. Additionally, $|\Sigma|$ is the size of the character set. In this problem, the character set is lowercase English letters, so $|\Sigma| = 26$.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
| class Node:
__slots__ = ['children', 'is_end']
def __init__(self):
self.children: List[Node | None] = [None] * 26
self.is_end = False
class Solution:
def minExtraChar(self, s: str, dictionary: List[str]) -> int:
root = Node()
for w in dictionary:
node = root
for c in w[::-1]:
i = ord(c) - ord('a')
if node.children[i] is None:
node.children[i] = Node()
node = node.children[i]
node.is_end = True
n = len(s)
f = [0] * (n + 1)
for i in range(1, n + 1):
f[i] = f[i - 1] + 1
node = root
for j in range(i - 1, -1, -1):
node = node.children[ord(s[j]) - ord('a')]
if node is None:
break
if node.is_end and f[j] < f[i]:
f[i] = f[j]
return f[n]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
| class Node {
Node[] children = new Node[26];
boolean isEnd;
}
class Solution {
public int minExtraChar(String s, String[] dictionary) {
Node root = new Node();
for (String w : dictionary) {
Node node = root;
for (int k = w.length() - 1; k >= 0; --k) {
int i = w.charAt(k) - 'a';
if (node.children[i] == null) {
node.children[i] = new Node();
}
node = node.children[i];
}
node.isEnd = true;
}
int n = s.length();
int[] f = new int[n + 1];
for (int i = 1; i <= n; ++i) {
f[i] = f[i - 1] + 1;
Node node = root;
for (int j = i - 1; j >= 0; --j) {
node = node.children[s.charAt(j) - 'a'];
if (node == null) {
break;
}
if (node.isEnd && f[j] < f[i]) {
f[i] = f[j];
}
}
}
return f[n];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
| class Node {
public:
Node* children[26];
bool isEnd = false;
Node() {
fill(children, children + 26, nullptr);
}
};
class Solution {
public:
int minExtraChar(string s, vector<string>& dictionary) {
Node* root = new Node();
for (const string& w : dictionary) {
Node* node = root;
for (int k = w.length() - 1; k >= 0; --k) {
int i = w[k] - 'a';
if (node->children[i] == nullptr) {
node->children[i] = new Node();
}
node = node->children[i];
}
node->isEnd = true;
}
int n = s.size();
int f[n + 1];
f[0] = 0;
for (int i = 1; i <= n; ++i) {
f[i] = f[i - 1] + 1;
Node* node = root;
for (int j = i - 1; ~j; --j) {
node = node->children[s[j] - 'a'];
if (node == nullptr) {
break;
}
if (node->isEnd && f[j] < f[i]) {
f[i] = f[j];
}
}
}
return f[n];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
| type Node struct {
children [26]*Node
isEnd bool
}
func minExtraChar(s string, dictionary []string) int {
root := &Node{}
for _, w := range dictionary {
node := root
for k := len(w) - 1; k >= 0; k-- {
i := int(w[k] - 'a')
if node.children[i] == nil {
node.children[i] = &Node{}
}
node = node.children[i]
}
node.isEnd = true
}
n := len(s)
f := make([]int, n+1)
for i := 1; i <= n; i++ {
f[i] = f[i-1] + 1
node := root
for j := i - 1; j >= 0; j-- {
node = node.children[int(s[j]-'a')]
if node == nil {
break
}
if node.isEnd && f[j] < f[i] {
f[i] = f[j]
}
}
}
return f[n]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
| class Node {
children: (Node | null)[] = Array(26).fill(null);
isEnd: boolean = false;
}
function minExtraChar(s: string, dictionary: string[]): number {
const root = new Node();
for (const w of dictionary) {
let node = root;
for (let k = w.length - 1; ~k; --k) {
const i = w.charCodeAt(k) - 'a'.charCodeAt(0);
if (node.children[i] === null) {
node.children[i] = new Node();
}
node = node.children[i] as Node;
}
node.isEnd = true;
}
const n = s.length;
const f: number[] = Array(n + 1).fill(0);
for (let i = 1; i <= n; ++i) {
f[i] = f[i - 1] + 1;
let node = root;
for (let j = i - 1; ~j; --j) {
node = (node.children[s.charCodeAt(j) - 'a'.charCodeAt(0)] as Node) || null;
if (node === null) {
break;
}
if (node.isEnd && f[j] < f[i]) {
f[i] = f[j];
}
}
}
return f[n];
}
|