Description#
The Fibonacci numbers, commonly denoted F(n)
form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0
and 1
. That is,
F(0) = 0, F(1) = 1
F(n) = F(n - 1) + F(n - 2), for n > 1.
Given n
, calculate F(n)
.
Example 1:
Input: n = 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: n = 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: n = 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Constraints:
Solutions#
Solution 1#
1
2
3
4
5
6
| class Solution:
def fib(self, n: int) -> int:
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return a
|
1
2
3
4
5
6
7
8
9
10
11
| class Solution {
public int fib(int n) {
int a = 0, b = 1;
while (n-- > 0) {
int c = a + b;
a = b;
b = c;
}
return a;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
| class Solution {
public:
int fib(int n) {
int a = 0, b = 1;
while (n--) {
int c = a + b;
a = b;
b = c;
}
return a;
}
};
|
1
2
3
4
5
6
7
| func fib(n int) int {
a, b := 0, 1
for i := 0; i < n; i++ {
a, b = b, a+b
}
return a
}
|
1
2
3
4
5
6
7
8
| function fib(n: number): number {
let a = 0;
let b = 1;
for (let i = 0; i < n; i++) {
[a, b] = [b, a + b];
}
return a;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
| impl Solution {
pub fn fib(n: i32) -> i32 {
let mut a = 0;
let mut b = 1;
for _ in 0..n {
let t = b;
b = a + b;
a = t;
}
a
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| /**
* @param {number} n
* @return {number}
*/
var fib = function (n) {
let a = 0;
let b = 1;
while (n--) {
const c = a + b;
a = b;
b = c;
}
return a;
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| class Solution {
/**
* @param Integer $n
* @return Integer
*/
function fib($n) {
if ($n == 0 || $n == 1) {
return $n;
}
$dp = [0, 1];
for ($i = 2; $i <= $n; $i++) {
$dp[$i] = $dp[$i - 2] + $dp[$i - 1];
}
return $dp[$n];
}
}
|
Solution 2#
1
2
3
4
5
6
| function fib(n: number): number {
if (n < 2) {
return n;
}
return fib(n - 1) + fib(n - 2);
}
|
1
2
3
4
5
6
7
8
| impl Solution {
pub fn fib(n: i32) -> i32 {
if n < 2 {
return n;
}
Self::fib(n - 1) + Self::fib(n - 2)
}
}
|