Description#
Given a positive integer n
, find the pivot integer x
such that:
- The sum of all elements between
1
and x
inclusively equals the sum of all elements between x
and n
inclusively.
Return the pivot integer x
. If no such integer exists, return -1
. It is guaranteed that there will be at most one pivot index for the given input.
Example 1:
Input: n = 8
Output: 6
Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21.
Example 2:
Input: n = 1
Output: 1
Explanation: 1 is the pivot integer since: 1 = 1.
Example 3:
Input: n = 4
Output: -1
Explanation: It can be proved that no such integer exist.
Constraints:
Solutions#
Solution 1: Enumeration#
We can directly enumerate $x$ in the range of $[1,..n]$, and check whether the following equation holds. If it holds, then $x$ is the pivot integer, and we can directly return $x$.
$$
(1 + x) \times x = (x + n) \times (n - x + 1)
$$
The time complexity is $O(n)$, where $n$ is the given positive integer $n$. The space complexity is $O(1)$.
1
2
3
4
5
6
| class Solution:
def pivotInteger(self, n: int) -> int:
for x in range(1, n + 1):
if (1 + x) * x == (x + n) * (n - x + 1):
return x
return -1
|
1
2
3
4
5
6
7
8
9
10
| class Solution {
public int pivotInteger(int n) {
for (int x = 1; x <= n; ++x) {
if ((1 + x) * x == (x + n) * (n - x + 1)) {
return x;
}
}
return -1;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
| class Solution {
public:
int pivotInteger(int n) {
for (int x = 1; x <= n; ++x) {
if ((1 + x) * x == (x + n) * (n - x + 1)) {
return x;
}
}
return -1;
}
};
|
1
2
3
4
5
6
7
8
| func pivotInteger(n int) int {
for x := 1; x <= n; x++ {
if (1+x)*x == (x+n)*(n-x+1) {
return x
}
}
return -1
}
|
1
2
3
4
5
6
7
8
| function pivotInteger(n: number): number {
for (let x = 1; x <= n; ++x) {
if ((1 + x) * x === (x + n) * (n - x + 1)) {
return x;
}
}
return -1;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
| impl Solution {
pub fn pivot_integer(n: i32) -> i32 {
let y = (n * (n + 1)) / 2;
let x = (y as f64).sqrt() as i32;
if x * x == y {
return x;
}
-1
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| class Solution {
/**
* @param Integer $n
* @return Integer
*/
function pivotInteger($n) {
$sum = ($n * ($n + 1)) / 2;
$pre = 0;
for ($i = 1; $i <= $n; $i++) {
if ($pre + $i === $sum - $pre) {
return $i;
}
$pre += $i;
}
return -1;
}
}
|
Solution 2: Mathematics#
We can transform the above equation to get:
$$
n \times (n + 1) = 2 \times x^2
$$
That is:
$$
x = \sqrt{\frac{n \times (n + 1)}{2}}
$$
If $x$ is an integer, then $x$ is the pivot integer, otherwise there is no pivot integer.
The time complexity is $O(1)$, and the space complexity is $O(1)$.
1
2
3
4
5
| class Solution:
def pivotInteger(self, n: int) -> int:
y = n * (n + 1) // 2
x = int(sqrt(y))
return x if x * x == y else -1
|
1
2
3
4
5
6
7
| class Solution {
public int pivotInteger(int n) {
int y = n * (n + 1) / 2;
int x = (int) Math.sqrt(y);
return x * x == y ? x : -1;
}
}
|
1
2
3
4
5
6
7
8
| class Solution {
public:
int pivotInteger(int n) {
int y = n * (n + 1) / 2;
int x = sqrt(y);
return x * x == y ? x : -1;
}
};
|
1
2
3
4
5
6
7
8
| func pivotInteger(n int) int {
y := n * (n + 1) / 2
x := int(math.Sqrt(float64(y)))
if x*x == y {
return x
}
return -1
}
|
1
2
3
4
5
| function pivotInteger(n: number): number {
const y = Math.floor((n * (n + 1)) / 2);
const x = Math.floor(Math.sqrt(y));
return x * x === y ? x : -1;
}
|