Description#
Given an array of integers nums
and an integer threshold
, we will choose a positive integer divisor
, divide all the array by it, and sum the division's result. Find the smallest divisor
such that the result mentioned above is less than or equal to threshold
.
Each result of the division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3
and 10/2 = 5
).
The test cases are generated so that there will be an answer.
Example 1:
Input: nums = [1,2,5,9], threshold = 6
Output: 5
Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1.
If the divisor is 4 we can get a sum of 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2).
Example 2:
Input: nums = [44,22,33,11,1], threshold = 5
Output: 44
Constraints:
1 <= nums.length <= 5 * 104
1 <= nums[i] <= 106
nums.length <= threshold <= 106
Solutions#
Solution 1: Binary Search#
Notice that for number $v$, if the sum of results of dividing each number in $nums$ by $v$ is less than or equal to $threshold$, then all values greater than $v$ satisfy the condition. There is a monotonicity, so we can use binary search to find the smallest $v$ that satisfies the condition.
We define the left boundary of the binary search $l=1$, $r=\max(nums)$. Each time we take $mid=(l+r)/2$, calculate the sum of the results of dividing each number in $nums$ by $mid$ $s$, if $s$ is less than or equal to $threshold$, then it means that $mid$ satisfies the condition, we will update $r$ to $mid$, otherwise we will update $l$ to $mid+1$.
Finally, return $l$.
The time complexity is $O(n \times \log M)$, where $n$ is the length of the array $nums$ and $M$ is the maximum value in the array $nums$. The space complexity is $O(1)$.
1
2
3
4
5
6
7
8
9
10
| class Solution:
def smallestDivisor(self, nums: List[int], threshold: int) -> int:
l, r = 1, max(nums)
while l < r:
mid = (l + r) >> 1
if sum((x + mid - 1) // mid for x in nums) <= threshold:
r = mid
else:
l = mid + 1
return l
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| class Solution {
public int smallestDivisor(int[] nums, int threshold) {
int l = 1, r = 1000000;
while (l < r) {
int mid = (l + r) >> 1;
int s = 0;
for (int x : nums) {
s += (x + mid - 1) / mid;
}
if (s <= threshold) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| class Solution {
public:
int smallestDivisor(vector<int>& nums, int threshold) {
int l = 1;
int r = *max_element(nums.begin(), nums.end());
while (l < r) {
int mid = (l + r) >> 1;
int s = 0;
for (int x : nums) {
s += (x + mid - 1) / mid;
}
if (s <= threshold) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
};
|
1
2
3
4
5
6
7
8
9
10
| func smallestDivisor(nums []int, threshold int) int {
return sort.Search(1000000, func(v int) bool {
v++
s := 0
for _, x := range nums {
s += (x + v - 1) / v
}
return s <= threshold
}) + 1
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| function smallestDivisor(nums: number[], threshold: number): number {
let l = 1;
let r = Math.max(...nums);
while (l < r) {
const mid = (l + r) >> 1;
let s = 0;
for (const x of nums) {
s += Math.ceil(x / mid);
}
if (s <= threshold) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
| /**
* @param {number[]} nums
* @param {number} threshold
* @return {number}
*/
var smallestDivisor = function (nums, threshold) {
let l = 1;
let r = Math.max(...nums);
while (l < r) {
const mid = (l + r) >> 1;
let s = 0;
for (const x of nums) {
s += Math.ceil(x / mid);
}
if (s <= threshold) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| public class Solution {
public int SmallestDivisor(int[] nums, int threshold) {
int l = 1;
int r = nums.Max();
while (l < r) {
int mid = (l + r) >> 1;
int s = 0;
foreach (int x in nums) {
s += (x + mid - 1) / mid;
}
if (s <= threshold) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
}
|
Solution 2#
1
2
3
4
5
6
7
| class Solution:
def smallestDivisor(self, nums: List[int], threshold: int) -> int:
def f(v: int) -> bool:
v += 1
return sum((x + v - 1) // v for x in nums) <= threshold
return bisect_left(range(max(nums)), True, key=f) + 1
|