Description#
There are n
gas stations along a circular route, where the amount of gas at the ith
station is gas[i]
.
You have a car with an unlimited gas tank and it costs cost[i]
of gas to travel from the ith
station to its next (i + 1)th
station. You begin the journey with an empty tank at one of the gas stations.
Given two integer arrays gas
and cost
, return the starting gas station's index if you can travel around the circuit once in the clockwise direction, otherwise return -1
. If there exists a solution, it is guaranteed to be unique
Example 1:
Input: gas = [1,2,3,4,5], cost = [3,4,5,1,2]
Output: 3
Explanation:
Start at station 3 (index 3) and fill up with 4 unit of gas. Your tank = 0 + 4 = 4
Travel to station 4. Your tank = 4 - 1 + 5 = 8
Travel to station 0. Your tank = 8 - 2 + 1 = 7
Travel to station 1. Your tank = 7 - 3 + 2 = 6
Travel to station 2. Your tank = 6 - 4 + 3 = 5
Travel to station 3. The cost is 5. Your gas is just enough to travel back to station 3.
Therefore, return 3 as the starting index.
Example 2:
Input: gas = [2,3,4], cost = [3,4,3]
Output: -1
Explanation:
You can't start at station 0 or 1, as there is not enough gas to travel to the next station.
Let's start at station 2 and fill up with 4 unit of gas. Your tank = 0 + 4 = 4
Travel to station 0. Your tank = 4 - 3 + 2 = 3
Travel to station 1. Your tank = 3 - 3 + 3 = 3
You cannot travel back to station 2, as it requires 4 unit of gas but you only have 3.
Therefore, you can't travel around the circuit once no matter where you start.
Constraints:
n == gas.length == cost.length
1 <= n <= 105
0 <= gas[i], cost[i] <= 104
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| class Solution:
def canCompleteCircuit(self, gas: List[int], cost: List[int]) -> int:
n = len(gas)
i = j = n - 1
cnt = s = 0
while cnt < n:
s += gas[j] - cost[j]
cnt += 1
j = (j + 1) % n
while s < 0 and cnt < n:
i -= 1
s += gas[i] - cost[i]
cnt += 1
return -1 if s < 0 else i
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
int n = gas.length;
int i = n - 1, j = n - 1;
int cnt = 0, s = 0;
while (cnt < n) {
s += gas[j] - cost[j];
++cnt;
j = (j + 1) % n;
while (s < 0 && cnt < n) {
--i;
s += gas[i] - cost[i];
++cnt;
}
}
return s < 0 ? -1 : i;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int n = gas.size();
int i = n - 1, j = n - 1;
int cnt = 0, s = 0;
while (cnt < n) {
s += gas[j] - cost[j];
++cnt;
j = (j + 1) % n;
while (s < 0 && cnt < n) {
--i;
s += gas[i] - cost[i];
++cnt;
}
}
return s < 0 ? -1 : i;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| func canCompleteCircuit(gas []int, cost []int) int {
n := len(gas)
i, j := n-1, n-1
cnt, s := 0, 0
for cnt < n {
s += gas[j] - cost[j]
cnt++
j = (j + 1) % n
for s < 0 && cnt < n {
i--
s += gas[i] - cost[i]
cnt++
}
}
if s < 0 {
return -1
}
return i
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| function canCompleteCircuit(gas: number[], cost: number[]): number {
const n = gas.length;
let i = n - 1;
let j = n - 1;
let s = 0;
let cnt = 0;
while (cnt < n) {
s += gas[j] - cost[j];
++cnt;
j = (j + 1) % n;
while (s < 0 && cnt < n) {
--i;
s += gas[i] - cost[i];
++cnt;
}
}
return s < 0 ? -1 : i;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| public class Solution {
public int CanCompleteCircuit(int[] gas, int[] cost) {
int n = gas.Length;
int i = n - 1, j = n - 1;
int s = 0, cnt = 0;
while (cnt < n) {
s += gas[j] - cost[j];
++cnt;
j = (j + 1) % n;
while (s < 0 && cnt < n) {
--i;
s += gas[i] - cost[i];
++cnt;
}
}
return s < 0 ? -1 : i;
}
}
|