Description#
Given an integer array nums
, return the maximum possible sum of elements of the array such that it is divisible by three.
Example 1:
Input: nums = [3,6,5,1,8]
Output: 18
Explanation: Pick numbers 3, 6, 1 and 8 their sum is 18 (maximum sum divisible by 3).
Example 2:
Input: nums = [4]
Output: 0
Explanation: Since 4 is not divisible by 3, do not pick any number.
Example 3:
Input: nums = [1,2,3,4,4]
Output: 12
Explanation: Pick numbers 1, 3, 4 and 4 their sum is 12 (maximum sum divisible by 3).
Constraints:
1 <= nums.length <= 4 * 104
1 <= nums[i] <= 104
Solutions#
Solution 1: Dynamic Programming#
We define $f[i][j]$ as the maximum sum of several numbers selected from the first $i$ numbers, such that the sum modulo $3$ equals $j$. Initially, $f[0][0]=0$, and the rest are $-\infty$.
For $f[i][j]$, we can consider the state of the $i$th number $x$:
- If we do not select $x$, then $f[i][j]=f[i-1][j]$;
- If we select $x$, then $f[i][j]=f[i-1][(j-x \bmod 3 + 3)\bmod 3]+x$.
Therefore, we can get the state transition equation:
$$
f[i][j]=\max{f[i-1][j],f[i-1][(j-x \bmod 3 + 3)\bmod 3]+x}
$$
The final answer is $f[n][0]$.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Where $n$ is the length of the array $nums$.
Note that the value of $f[i][j]$ is only related to $f[i-1][j]$ and $f[i-1][(j-x \bmod 3 + 3)\bmod 3]$, so we can use a rolling array to optimize the space complexity, reducing the space complexity to $O(1)$.
1
2
3
4
5
6
7
8
9
| class Solution:
def maxSumDivThree(self, nums: List[int]) -> int:
n = len(nums)
f = [[-inf] * 3 for _ in range(n + 1)]
f[0][0] = 0
for i, x in enumerate(nums, 1):
for j in range(3):
f[i][j] = max(f[i - 1][j], f[i - 1][(j - x) % 3] + x)
return f[n][0]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| class Solution {
public int maxSumDivThree(int[] nums) {
int n = nums.length;
final int inf = 1 << 30;
int[][] f = new int[n + 1][3];
f[0][1] = f[0][2] = -inf;
for (int i = 1; i <= n; ++i) {
int x = nums[i - 1];
for (int j = 0; j < 3; ++j) {
f[i][j] = Math.max(f[i - 1][j], f[i - 1][(j - x % 3 + 3) % 3] + x);
}
}
return f[n][0];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| class Solution {
public:
int maxSumDivThree(vector<int>& nums) {
int n = nums.size();
const int inf = 1 << 30;
int f[n + 1][3];
f[0][0] = 0;
f[0][1] = f[0][2] = -inf;
for (int i = 1; i <= n; ++i) {
int x = nums[i - 1];
for (int j = 0; j < 3; ++j) {
f[i][j] = max(f[i - 1][j], f[i - 1][(j - x % 3 + 3) % 3] + x);
}
}
return f[n][0];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
| func maxSumDivThree(nums []int) int {
n := len(nums)
const inf = 1 << 30
f := make([][3]int, n+1)
f[0] = [3]int{0, -inf, -inf}
for i, x := range nums {
i++
for j := 0; j < 3; j++ {
f[i][j] = max(f[i-1][j], f[i-1][(j-x%3+3)%3]+x)
}
}
return f[n][0]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| function maxSumDivThree(nums: number[]): number {
const n = nums.length;
const inf = 1 << 30;
const f: number[][] = Array(n + 1)
.fill(0)
.map(() => Array(3).fill(-inf));
f[0][0] = 0;
for (let i = 1; i <= n; ++i) {
const x = nums[i - 1];
for (let j = 0; j < 3; ++j) {
f[i][j] = Math.max(f[i - 1][j], f[i - 1][(j - (x % 3) + 3) % 3] + x);
}
}
return f[n][0];
}
|
Solution 2#
1
2
3
4
5
6
7
8
9
| class Solution:
def maxSumDivThree(self, nums: List[int]) -> int:
f = [0, -inf, -inf]
for x in nums:
g = f[:]
for j in range(3):
g[j] = max(f[j], f[(j - x) % 3] + x)
f = g
return f[0]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| class Solution {
public int maxSumDivThree(int[] nums) {
final int inf = 1 << 30;
int[] f = new int[] {0, -inf, -inf};
for (int x : nums) {
int[] g = f.clone();
for (int j = 0; j < 3; ++j) {
g[j] = Math.max(f[j], f[(j - x % 3 + 3) % 3] + x);
}
f = g;
}
return f[0];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| class Solution {
public:
int maxSumDivThree(vector<int>& nums) {
const int inf = 1 << 30;
vector<int> f = {0, -inf, -inf};
for (int& x : nums) {
vector<int> g = f;
for (int j = 0; j < 3; ++j) {
g[j] = max(f[j], f[(j - x % 3 + 3) % 3] + x);
}
f = move(g);
}
return f[0];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
| func maxSumDivThree(nums []int) int {
const inf = 1 << 30
f := [3]int{0, -inf, -inf}
for _, x := range nums {
g := [3]int{}
for j := range f {
g[j] = max(f[j], f[(j-x%3+3)%3]+x)
}
f = g
}
return f[0]
}
|
1
2
3
4
5
6
7
8
9
10
11
| function maxSumDivThree(nums: number[]): number {
const inf = 1 << 30;
const f: number[] = [0, -inf, -inf];
for (const x of nums) {
const g = [...f];
for (let j = 0; j < 3; ++j) {
f[j] = Math.max(g[j], g[(j - (x % 3) + 3) % 3] + x);
}
}
return f[0];
}
|