232. Implement Queue using Stacks

Description

Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the functions of a normal queue (push, peek, pop, and empty).

Implement the MyQueue class:

  • void push(int x) Pushes element x to the back of the queue.
  • int pop() Removes the element from the front of the queue and returns it.
  • int peek() Returns the element at the front of the queue.
  • boolean empty() Returns true if the queue is empty, false otherwise.

Notes:

  • You must use only standard operations of a stack, which means only push to top, peek/pop from top, size, and is empty operations are valid.
  • Depending on your language, the stack may not be supported natively. You may simulate a stack using a list or deque (double-ended queue) as long as you use only a stack's standard operations.

 

Example 1:

Input
["MyQueue", "push", "push", "peek", "pop", "empty"]
[[], [1], [2], [], [], []]
Output
[null, null, null, 1, 1, false]

Explanation
MyQueue myQueue = new MyQueue();
myQueue.push(1); // queue is: [1]
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
myQueue.peek(); // return 1
myQueue.pop(); // return 1, queue is [2]
myQueue.empty(); // return false

 

Constraints:

  • 1 <= x <= 9
  • At most 100 calls will be made to push, pop, peek, and empty.
  • All the calls to pop and peek are valid.

 

Follow-up: Can you implement the queue such that each operation is amortized O(1) time complexity? In other words, performing n operations will take overall O(n) time even if one of those operations may take longer.

Solutions

Solution 1

Python Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class MyQueue:
    def __init__(self):
        self.stk1 = []
        self.stk2 = []

    def push(self, x: int) -> None:
        self.stk1.append(x)

    def pop(self) -> int:
        self.move()
        return self.stk2.pop()

    def peek(self) -> int:
        self.move()
        return self.stk2[-1]

    def empty(self) -> bool:
        return not self.stk1 and not self.stk2

    def move(self):
        if not self.stk2:
            while self.stk1:
                self.stk2.append(self.stk1.pop())


# Your MyQueue object will be instantiated and called as such:
# obj = MyQueue()
# obj.push(x)
# param_2 = obj.pop()
# param_3 = obj.peek()
# param_4 = obj.empty()

Java Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class MyQueue {
    private Deque<Integer> stk1 = new ArrayDeque<>();
    private Deque<Integer> stk2 = new ArrayDeque<>();

    public MyQueue() {
    }

    public void push(int x) {
        stk1.push(x);
    }

    public int pop() {
        move();
        return stk2.pop();
    }

    public int peek() {
        move();
        return stk2.peek();
    }

    public boolean empty() {
        return stk1.isEmpty() && stk2.isEmpty();
    }

    private void move() {
        while (stk2.isEmpty()) {
            while (!stk1.isEmpty()) {
                stk2.push(stk1.pop());
            }
        }
    }
}

/**
 * Your MyQueue object will be instantiated and called as such:
 * MyQueue obj = new MyQueue();
 * obj.push(x);
 * int param_2 = obj.pop();
 * int param_3 = obj.peek();
 * boolean param_4 = obj.empty();
 */

C++ Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class MyQueue {
public:
    MyQueue() {
    }

    void push(int x) {
        stk1.push(x);
    }

    int pop() {
        move();
        int ans = stk2.top();
        stk2.pop();
        return ans;
    }

    int peek() {
        move();
        return stk2.top();
    }

    bool empty() {
        return stk1.empty() && stk2.empty();
    }

private:
    stack<int> stk1;
    stack<int> stk2;

    void move() {
        if (stk2.empty()) {
            while (!stk1.empty()) {
                stk2.push(stk1.top());
                stk1.pop();
            }
        }
    }
};

/**
 * Your MyQueue object will be instantiated and called as such:
 * MyQueue* obj = new MyQueue();
 * obj->push(x);
 * int param_2 = obj->pop();
 * int param_3 = obj->peek();
 * bool param_4 = obj->empty();
 */

Go Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
type MyQueue struct {
	stk1 []int
	stk2 []int
}

func Constructor() MyQueue {
	return MyQueue{[]int{}, []int{}}
}

func (this *MyQueue) Push(x int) {
	this.stk1 = append(this.stk1, x)
}

func (this *MyQueue) Pop() int {
	this.move()
	ans := this.stk2[len(this.stk2)-1]
	this.stk2 = this.stk2[:len(this.stk2)-1]
	return ans
}

func (this *MyQueue) Peek() int {
	this.move()
	return this.stk2[len(this.stk2)-1]
}

func (this *MyQueue) Empty() bool {
	return len(this.stk1) == 0 && len(this.stk2) == 0
}

func (this *MyQueue) move() {
	if len(this.stk2) == 0 {
		for len(this.stk1) > 0 {
			this.stk2 = append(this.stk2, this.stk1[len(this.stk1)-1])
			this.stk1 = this.stk1[:len(this.stk1)-1]
		}
	}
}

/**
 * Your MyQueue object will be instantiated and called as such:
 * obj := Constructor();
 * obj.Push(x);
 * param_2 := obj.Pop();
 * param_3 := obj.Peek();
 * param_4 := obj.Empty();
 */

TypeScript Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
class MyQueue {
    stk1: number[];
    stk2: number[];

    constructor() {
        this.stk1 = [];
        this.stk2 = [];
    }

    push(x: number): void {
        this.stk1.push(x);
    }

    pop(): number {
        this.move();
        return this.stk2.pop();
    }

    peek(): number {
        this.move();
        return this.stk2[this.stk2.length - 1];
    }

    empty(): boolean {
        return !this.stk1.length && !this.stk2.length;
    }

    move(): void {
        if (!this.stk2.length) {
            while (this.stk1.length) {
                this.stk2.push(this.stk1.pop());
            }
        }
    }
}

/**
 * Your MyQueue object will be instantiated and called as such:
 * var obj = new MyQueue()
 * obj.push(x)
 * var param_2 = obj.pop()
 * var param_3 = obj.peek()
 * var param_4 = obj.empty()
 */

Rust Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
struct MyQueue {
    in_stack: Vec<i32>,
    out_stack: Vec<i32>,
}

/**
 * `&self` means the method takes an immutable reference.
 * If you need a mutable reference, change it to `&mut self` instead.
 */
impl MyQueue {
    fn new() -> Self {
        Self {
            in_stack: vec![],
            out_stack: vec![],
        }
    }

    fn push(&mut self, x: i32) {
        self.in_stack.push(x);
    }

    fn pop(&mut self) -> i32 {
        if self.out_stack.is_empty() {
            self.fill_out();
        }
        self.out_stack.pop().unwrap()
    }

    fn peek(&mut self) -> i32 {
        if self.out_stack.is_empty() {
            self.fill_out();
        }
        *self.out_stack.last().unwrap()
    }

    fn empty(&self) -> bool {
        self.in_stack.is_empty() && self.out_stack.is_empty()
    }

    fn fill_out(&mut self) {
        let MyQueue { in_stack, out_stack } = self;
        if out_stack.is_empty() {
            while !in_stack.is_empty() {
                out_stack.push(in_stack.pop().unwrap());
            }
        }
    }
}/**
 * Your MyQueue object will be instantiated and called as such:
 * let obj = MyQueue::new();
 * obj.push(x);
 * let ret_2: i32 = obj.pop();
 * let ret_3: i32 = obj.peek();
 * let ret_4: bool = obj.empty();
 */