Description#
Given the root
of a binary tree and an integer limit
, delete all insufficient nodes in the tree simultaneously, and return the root of the resulting binary tree.
A node is insufficient if every root to leaf path intersecting this node has a sum strictly less than limit
.
A leaf is a node with no children.
Example 1:
Input: root = [1,2,3,4,-99,-99,7,8,9,-99,-99,12,13,-99,14], limit = 1
Output: [1,2,3,4,null,null,7,8,9,null,14]
Example 2:
Input: root = [5,4,8,11,null,17,4,7,1,null,null,5,3], limit = 22
Output: [5,4,8,11,null,17,4,7,null,null,null,5]
Example 3:
Input: root = [1,2,-3,-5,null,4,null], limit = -1
Output: [1,null,-3,4]
Constraints:
- The number of nodes in the tree is in the range
[1, 5000]
. -105 <= Node.val <= 105
-109 <= limit <= 109
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def sufficientSubset(
self, root: Optional[TreeNode], limit: int
) -> Optional[TreeNode]:
if root is None:
return None
limit -= root.val
if root.left is None and root.right is None:
return None if limit > 0 else root
root.left = self.sufficientSubset(root.left, limit)
root.right = self.sufficientSubset(root.right, limit)
return None if root.left is None and root.right is None else root
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
| /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode sufficientSubset(TreeNode root, int limit) {
if (root == null) {
return null;
}
limit -= root.val;
if (root.left == null && root.right == null) {
return limit > 0 ? null : root;
}
root.left = sufficientSubset(root.left, limit);
root.right = sufficientSubset(root.right, limit);
return root.left == null && root.right == null ? null : root;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
| /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* sufficientSubset(TreeNode* root, int limit) {
if (!root) {
return nullptr;
}
limit -= root->val;
if (!root->left && !root->right) {
return limit > 0 ? nullptr : root;
}
root->left = sufficientSubset(root->left, limit);
root->right = sufficientSubset(root->right, limit);
return !root->left && !root->right ? nullptr : root;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
| /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func sufficientSubset(root *TreeNode, limit int) *TreeNode {
if root == nil {
return nil
}
limit -= root.Val
if root.Left == nil && root.Right == nil {
if limit > 0 {
return nil
}
return root
}
root.Left = sufficientSubset(root.Left, limit)
root.Right = sufficientSubset(root.Right, limit)
if root.Left == nil && root.Right == nil {
return nil
}
return root
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
| /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function sufficientSubset(root: TreeNode | null, limit: number): TreeNode | null {
if (root === null) {
return null;
}
limit -= root.val;
if (root.left === null && root.right === null) {
return limit > 0 ? null : root;
}
root.left = sufficientSubset(root.left, limit);
root.right = sufficientSubset(root.right, limit);
return root.left === null && root.right === null ? null : root;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
| /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} limit
* @return {TreeNode}
*/
var sufficientSubset = function (root, limit) {
if (root === null) {
return null;
}
limit -= root.val;
if (root.left === null && root.right === null) {
return limit > 0 ? null : root;
}
root.left = sufficientSubset(root.left, limit);
root.right = sufficientSubset(root.right, limit);
return root.left === null && root.right === null ? null : root;
};
|