Description#
There is a bag that consists of items, each item has a number 1
, 0
, or -1
written on it.
You are given four non-negative integers numOnes
, numZeros
, numNegOnes
, and k
.
The bag initially contains:
numOnes
items with 1
s written on them.numZeroes
items with 0
s written on them.numNegOnes
items with -1
s written on them.
We want to pick exactly k
items among the available items. Return the maximum possible sum of numbers written on the items.
Example 1:
Input: numOnes = 3, numZeros = 2, numNegOnes = 0, k = 2
Output: 2
Explanation: We have a bag of items with numbers written on them {1, 1, 1, 0, 0}. We take 2 items with 1 written on them and get a sum in a total of 2.
It can be proven that 2 is the maximum possible sum.
Example 2:
Input: numOnes = 3, numZeros = 2, numNegOnes = 0, k = 4
Output: 3
Explanation: We have a bag of items with numbers written on them {1, 1, 1, 0, 0}. We take 3 items with 1 written on them, and 1 item with 0 written on it, and get a sum in a total of 3.
It can be proven that 3 is the maximum possible sum.
Constraints:
0 <= numOnes, numZeros, numNegOnes <= 50
0 <= k <= numOnes + numZeros + numNegOnes
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
| class Solution:
def kItemsWithMaximumSum(
self, numOnes: int, numZeros: int, numNegOnes: int, k: int
) -> int:
if numOnes >= k:
return k
if numZeros >= k - numOnes:
return numOnes
return numOnes - (k - numOnes - numZeros)
|
1
2
3
4
5
6
7
8
9
10
11
| class Solution {
public int kItemsWithMaximumSum(int numOnes, int numZeros, int numNegOnes, int k) {
if (numOnes >= k) {
return k;
}
if (numZeros >= k - numOnes) {
return numOnes;
}
return numOnes - (k - numOnes - numZeros);
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
| class Solution {
public:
int kItemsWithMaximumSum(int numOnes, int numZeros, int numNegOnes, int k) {
if (numOnes >= k) {
return k;
}
if (numZeros >= k - numOnes) {
return numOnes;
}
return numOnes - (k - numOnes - numZeros);
}
};
|
1
2
3
4
5
6
7
8
9
| func kItemsWithMaximumSum(numOnes int, numZeros int, numNegOnes int, k int) int {
if numOnes >= k {
return k
}
if numZeros >= k-numOnes {
return numOnes
}
return numOnes - (k - numOnes - numZeros)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| function kItemsWithMaximumSum(
numOnes: number,
numZeros: number,
numNegOnes: number,
k: number,
): number {
if (numOnes >= k) {
return k;
}
if (numZeros >= k - numOnes) {
return numOnes;
}
return numOnes - (k - numOnes - numZeros);
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| impl Solution {
pub fn k_items_with_maximum_sum(
num_ones: i32,
num_zeros: i32,
num_neg_ones: i32,
k: i32
) -> i32 {
if num_ones > k {
return k;
}
if num_ones + num_zeros > k {
return num_ones;
}
num_ones - (k - num_ones - num_zeros)
}
}
|
1
2
3
4
5
6
7
8
9
10
11
| public class Solution {
public int KItemsWithMaximumSum(int numOnes, int numZeros, int numNegOnes, int k) {
if (numOnes >= k) {
return k;
}
if (numZeros >= k - numOnes) {
return numOnes;
}
return numOnes - (k - numOnes - numZeros);
}
}
|