Description#
Given an array of integers heights
representing the histogram's bar height where the width of each bar is 1
, return the area of the largest rectangle in the histogram.
Example 1:
Input: heights = [2,1,5,6,2,3]
Output: 10
Explanation: The above is a histogram where width of each bar is 1.
The largest rectangle is shown in the red area, which has an area = 10 units.
Example 2:
Input: heights = [2,4]
Output: 4
Constraints:
1 <= heights.length <= 105
0 <= heights[i] <= 104
Solutions#
Solution 1: Monotonic Stack#
We can enumerate the height $h$ of each bar as the height of the rectangle. Using a monotonic stack, we find the index $left_i$, $right_i$ of the first bar with a height less than $h$ to the left and right. The area of the rectangle at this time is $h \times (right_i-left_i-1)$. We can find the maximum value.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ represents the length of $heights$.
Common model of monotonic stack: Find the nearest number to the left/right of each number that is larger/smaller than it. Template:
1
2
3
4
5
| stk = []
for i in range(n):
while stk and check(stk[-1], i):
stk.pop()
stk.append(i)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| class Solution:
def largestRectangleArea(self, heights: List[int]) -> int:
n = len(heights)
stk = []
left = [-1] * n
right = [n] * n
for i, h in enumerate(heights):
while stk and heights[stk[-1]] >= h:
right[stk[-1]] = i
stk.pop()
if stk:
left[i] = stk[-1]
stk.append(i)
return max(h * (right[i] - left[i] - 1) for i, h in enumerate(heights))
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| class Solution {
public int largestRectangleArea(int[] heights) {
int res = 0, n = heights.length;
Deque<Integer> stk = new ArrayDeque<>();
int[] left = new int[n];
int[] right = new int[n];
Arrays.fill(right, n);
for (int i = 0; i < n; ++i) {
while (!stk.isEmpty() && heights[stk.peek()] >= heights[i]) {
right[stk.pop()] = i;
}
left[i] = stk.isEmpty() ? -1 : stk.peek();
stk.push(i);
}
for (int i = 0; i < n; ++i) {
res = Math.max(res, heights[i] * (right[i] - left[i] - 1));
}
return res;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
int res = 0, n = heights.size();
stack<int> stk;
vector<int> left(n, -1);
vector<int> right(n, n);
for (int i = 0; i < n; ++i) {
while (!stk.empty() && heights[stk.top()] >= heights[i]) {
right[stk.top()] = i;
stk.pop();
}
if (!stk.empty()) left[i] = stk.top();
stk.push(i);
}
for (int i = 0; i < n; ++i)
res = max(res, heights[i] * (right[i] - left[i] - 1));
return res;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
| func largestRectangleArea(heights []int) int {
res, n := 0, len(heights)
var stk []int
left, right := make([]int, n), make([]int, n)
for i := range right {
right[i] = n
}
for i, h := range heights {
for len(stk) > 0 && heights[stk[len(stk)-1]] >= h {
right[stk[len(stk)-1]] = i
stk = stk[:len(stk)-1]
}
if len(stk) > 0 {
left[i] = stk[len(stk)-1]
} else {
left[i] = -1
}
stk = append(stk, i)
}
for i, h := range heights {
res = max(res, h*(right[i]-left[i]-1))
}
return res
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
| impl Solution {
#[allow(dead_code)]
pub fn largest_rectangle_area(heights: Vec<i32>) -> i32 {
let n = heights.len();
let mut left = vec![-1; n];
let mut right = vec![-1; n];
let mut stack: Vec<(usize, i32)> = Vec::new();
let mut ret = -1;
// Build left vector
for (i, h) in heights.iter().enumerate() {
while !stack.is_empty() && stack.last().unwrap().1 >= *h {
stack.pop();
}
if stack.is_empty() {
left[i] = -1;
} else {
left[i] = stack.last().unwrap().0 as i32;
}
stack.push((i, *h));
}
stack.clear();
// Build right vector
for (i, h) in heights.iter().enumerate().rev() {
while !stack.is_empty() && stack.last().unwrap().1 >= *h {
stack.pop();
}
if stack.is_empty() {
right[i] = n as i32;
} else {
right[i] = stack.last().unwrap().0 as i32;
}
stack.push((i, *h));
}
// Calculate the max area
for (i, h) in heights.iter().enumerate() {
ret = std::cmp::max(ret, (right[i] - left[i] - 1) * *h);
}
ret
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
| using System;
using System.Collections.Generic;
using System.Linq;
public class Solution {
public int LargestRectangleArea(int[] height) {
var stack = new Stack<int>();
var result = 0;
var i = 0;
while (i < height.Length || stack.Any())
{
if (!stack.Any() || (i < height.Length && height[stack.Peek()] < height[i]))
{
stack.Push(i);
++i;
}
else
{
var previousIndex = stack.Pop();
var area = height[previousIndex] * (stack.Any() ? (i - stack.Peek() - 1) : i);
result = Math.Max(result, area);
}
}
return result;
}
}
|
Solution 2#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| class Solution:
def largestRectangleArea(self, heights: List[int]) -> int:
n = len(heights)
stk = []
left = [-1] * n
right = [n] * n
for i, h in enumerate(heights):
while stk and heights[stk[-1]] >= h:
stk.pop()
if stk:
left[i] = stk[-1]
stk.append(i)
stk = []
for i in range(n - 1, -1, -1):
h = heights[i]
while stk and heights[stk[-1]] >= h:
stk.pop()
if stk:
right[i] = stk[-1]
stk.append(i)
return max(h * (right[i] - left[i] - 1) for i, h in enumerate(heights))
|