Description#
Given a single positive integer x
, we will write an expression of the form x (op1) x (op2) x (op3) x ...
where each operator op1
, op2
, etc. is either addition, subtraction, multiplication, or division (+
, -
, *
, or /)
. For example, with x = 3
, we might write 3 * 3 / 3 + 3 - 3
which is a value of 3.
When writing such an expression, we adhere to the following conventions:
- The division operator (
/
) returns rational numbers. - There are no parentheses placed anywhere.
- We use the usual order of operations: multiplication and division happen before addition and subtraction.
- It is not allowed to use the unary negation operator (
-
). For example, "x - x
" is a valid expression as it only uses subtraction, but "-x + x
" is not because it uses negation.
We would like to write an expression with the least number of operators such that the expression equals the given target
. Return the least number of operators used.
Example 1:
Input: x = 3, target = 19
Output: 5
Explanation: 3 * 3 + 3 * 3 + 3 / 3.
The expression contains 5 operations.
Example 2:
Input: x = 5, target = 501
Output: 8
Explanation: 5 * 5 * 5 * 5 - 5 * 5 * 5 + 5 / 5.
The expression contains 8 operations.
Example 3:
Input: x = 100, target = 100000000
Output: 3
Explanation: 100 * 100 * 100 * 100.
The expression contains 3 operations.
Constraints:
2 <= x <= 100
1 <= target <= 2 * 108
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| class Solution:
def leastOpsExpressTarget(self, x: int, target: int) -> int:
@cache
def dfs(v: int) -> int:
if x >= v:
return min(v * 2 - 1, 2 * (x - v))
k = 2
while x**k < v:
k += 1
if x**k - v < v:
return min(k + dfs(x**k - v), k - 1 + dfs(v - x ** (k - 1)))
return k - 1 + dfs(v - x ** (k - 1))
return dfs(target)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
| class Solution {
private int x;
private Map<Integer, Integer> f = new HashMap<>();
public int leastOpsExpressTarget(int x, int target) {
this.x = x;
return dfs(target);
}
private int dfs(int v) {
if (x >= v) {
return Math.min(v * 2 - 1, 2 * (x - v));
}
if (f.containsKey(v)) {
return f.get(v);
}
int k = 2;
long y = (long) x * x;
while (y < v) {
y *= x;
++k;
}
int ans = k - 1 + dfs(v - (int) (y / x));
if (y - v < v) {
ans = Math.min(ans, k + dfs((int) y - v));
}
f.put(v, ans);
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
| class Solution {
public:
int leastOpsExpressTarget(int x, int target) {
unordered_map<int, int> f;
function<int(int)> dfs = [&](int v) -> int {
if (x >= v) {
return min(v * 2 - 1, 2 * (x - v));
}
if (f.count(v)) {
return f[v];
}
int k = 2;
long long y = x * x;
while (y < v) {
y *= x;
++k;
}
int ans = k - 1 + dfs(v - y / x);
if (y - v < v) {
ans = min(ans, k + dfs(y - v));
}
f[v] = ans;
return ans;
};
return dfs(target);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
| func leastOpsExpressTarget(x int, target int) int {
f := map[int]int{}
var dfs func(int) int
dfs = func(v int) int {
if x > v {
return min(v*2-1, 2*(x-v))
}
if val, ok := f[v]; ok {
return val
}
k := 2
y := x * x
for y < v {
y *= x
k++
}
ans := k - 1 + dfs(v-y/x)
if y-v < v {
ans = min(ans, k+dfs(y-v))
}
f[v] = ans
return ans
}
return dfs(target)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
| function leastOpsExpressTarget(x: number, target: number): number {
const f: Map<number, number> = new Map();
const dfs = (v: number): number => {
if (x > v) {
return Math.min(v * 2 - 1, 2 * (x - v));
}
if (f.has(v)) {
return f.get(v)!;
}
let k = 2;
let y = x * x;
while (y < v) {
y *= x;
++k;
}
let ans = k - 1 + dfs(v - Math.floor(y / x));
if (y - v < v) {
ans = Math.min(ans, k + dfs(y - v));
}
f.set(v, ans);
return ans;
};
return dfs(target);
}
|