Description#
You are given a 0-indexed integer array nums
and an integer threshold
.
Find the length of the longest subarray of nums
starting at index l
and ending at index r
(0 <= l <= r < nums.length)
that satisfies the following conditions:
nums[l] % 2 == 0
- For all indices
i
in the range [l, r - 1]
, nums[i] % 2 != nums[i + 1] % 2
- For all indices
i
in the range [l, r]
, nums[i] <= threshold
Return an integer denoting the length of the longest such subarray.
Note: A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [3,2,5,4], threshold = 5
Output: 3
Explanation: In this example, we can select the subarray that starts at l = 1 and ends at r = 3 => [2,5,4]. This subarray satisfies the conditions.
Hence, the answer is the length of the subarray, 3. We can show that 3 is the maximum possible achievable length.
Example 2:
Input: nums = [1,2], threshold = 2
Output: 1
Explanation: In this example, we can select the subarray that starts at l = 1 and ends at r = 1 => [2].
It satisfies all the conditions and we can show that 1 is the maximum possible achievable length.
Example 3:
Input: nums = [2,3,4,5], threshold = 4
Output: 3
Explanation: In this example, we can select the subarray that starts at l = 0 and ends at r = 2 => [2,3,4].
It satisfies all the conditions.
Hence, the answer is the length of the subarray, 3. We can show that 3 is the maximum possible achievable length.
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 100
1 <= threshold <= 100
Solutions#
Solution 1: Enumeration#
We enumerate all $l$ in the range $[0,..n-1]$. If $nums[l]$ satisfies $nums[l] \bmod 2 = 0$ and $nums[l] \leq threshold$, then we start from $l+1$ to find the largest $r$ that meets the condition. At this time, the length of the longest odd-even subarray with $nums[l]$ as the left endpoint is $r - l$. We take the maximum of all $r - l$ as the answer.
The time complexity is $O(n^2)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.
1
2
3
4
5
6
7
8
9
10
| class Solution:
def longestAlternatingSubarray(self, nums: List[int], threshold: int) -> int:
ans, n = 0, len(nums)
for l in range(n):
if nums[l] % 2 == 0 and nums[l] <= threshold:
r = l + 1
while r < n and nums[r] % 2 != nums[r - 1] % 2 and nums[r] <= threshold:
r += 1
ans = max(ans, r - l)
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| class Solution {
public int longestAlternatingSubarray(int[] nums, int threshold) {
int ans = 0, n = nums.length;
for (int l = 0; l < n; ++l) {
if (nums[l] % 2 == 0 && nums[l] <= threshold) {
int r = l + 1;
while (r < n && nums[r] % 2 != nums[r - 1] % 2 && nums[r] <= threshold) {
++r;
}
ans = Math.max(ans, r - l);
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| class Solution {
public:
int longestAlternatingSubarray(vector<int>& nums, int threshold) {
int ans = 0, n = nums.size();
for (int l = 0; l < n; ++l) {
if (nums[l] % 2 == 0 && nums[l] <= threshold) {
int r = l + 1;
while (r < n && nums[r] % 2 != nums[r - 1] % 2 && nums[r] <= threshold) {
++r;
}
ans = max(ans, r - l);
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
| func longestAlternatingSubarray(nums []int, threshold int) (ans int) {
n := len(nums)
for l := range nums {
if nums[l]%2 == 0 && nums[l] <= threshold {
r := l + 1
for r < n && nums[r]%2 != nums[r-1]%2 && nums[r] <= threshold {
r++
}
ans = max(ans, r-l)
}
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| function longestAlternatingSubarray(nums: number[], threshold: number): number {
const n = nums.length;
let ans = 0;
for (let l = 0; l < n; ++l) {
if (nums[l] % 2 === 0 && nums[l] <= threshold) {
let r = l + 1;
while (r < n && nums[r] % 2 !== nums[r - 1] % 2 && nums[r] <= threshold) {
++r;
}
ans = Math.max(ans, r - l);
}
}
return ans;
}
|
Solution 2: Optimized Enumeration#
We notice that the problem actually divides the array into several disjoint subarrays that meet the condition. We only need to find the longest one among these subarrays. Therefore, when enumerating $l$ and $r$, we don’t need to backtrack, we just need to traverse from left to right once.
The time complexity is $O(n)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.
1
2
3
4
5
6
7
8
9
10
11
12
13
| class Solution:
def longestAlternatingSubarray(self, nums: List[int], threshold: int) -> int:
ans, l, n = 0, 0, len(nums)
while l < n:
if nums[l] % 2 == 0 and nums[l] <= threshold:
r = l + 1
while r < n and nums[r] % 2 != nums[r - 1] % 2 and nums[r] <= threshold:
r += 1
ans = max(ans, r - l)
l = r
else:
l += 1
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| class Solution {
public int longestAlternatingSubarray(int[] nums, int threshold) {
int ans = 0;
for (int l = 0, n = nums.length; l < n;) {
if (nums[l] % 2 == 0 && nums[l] <= threshold) {
int r = l + 1;
while (r < n && nums[r] % 2 != nums[r - 1] % 2 && nums[r] <= threshold) {
++r;
}
ans = Math.max(ans, r - l);
l = r;
} else {
++l;
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| class Solution {
public:
int longestAlternatingSubarray(vector<int>& nums, int threshold) {
int ans = 0;
for (int l = 0, n = nums.size(); l < n;) {
if (nums[l] % 2 == 0 && nums[l] <= threshold) {
int r = l + 1;
while (r < n && nums[r] % 2 != nums[r - 1] % 2 && nums[r] <= threshold) {
++r;
}
ans = max(ans, r - l);
l = r;
} else {
++l;
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| func longestAlternatingSubarray(nums []int, threshold int) (ans int) {
for l, n := 0, len(nums); l < n; {
if nums[l]%2 == 0 && nums[l] <= threshold {
r := l + 1
for r < n && nums[r]%2 != nums[r-1]%2 && nums[r] <= threshold {
r++
}
ans = max(ans, r-l)
l = r
} else {
l++
}
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| function longestAlternatingSubarray(nums: number[], threshold: number): number {
const n = nums.length;
let ans = 0;
for (let l = 0; l < n; ) {
if (nums[l] % 2 === 0 && nums[l] <= threshold) {
let r = l + 1;
while (r < n && nums[r] % 2 !== nums[r - 1] % 2 && nums[r] <= threshold) {
++r;
}
ans = Math.max(ans, r - l);
l = r;
} else {
++l;
}
}
return ans;
}
|