Description#
Given a string s
, find the longest palindromic subsequence's length in s
.
A subsequence is a sequence that can be derived from another sequence by deleting some or no elements without changing the order of the remaining elements.
Example 1:
Input: s = "bbbab"
Output: 4
Explanation: One possible longest palindromic subsequence is "bbbb".
Example 2:
Input: s = "cbbd"
Output: 2
Explanation: One possible longest palindromic subsequence is "bb".
Constraints:
1 <= s.length <= 1000
s
consists only of lowercase English letters.
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
10
11
12
13
| class Solution:
def longestPalindromeSubseq(self, s: str) -> int:
n = len(s)
dp = [[0] * n for _ in range(n)]
for i in range(n):
dp[i][i] = 1
for j in range(1, n):
for i in range(j - 1, -1, -1):
if s[i] == s[j]:
dp[i][j] = dp[i + 1][j - 1] + 2
else:
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])
return dp[0][-1]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| class Solution {
public int longestPalindromeSubseq(String s) {
int n = s.length();
int[][] dp = new int[n][n];
for (int i = 0; i < n; ++i) {
dp[i][i] = 1;
}
for (int j = 1; j < n; ++j) {
for (int i = j - 1; i >= 0; --i) {
if (s.charAt(i) == s.charAt(j)) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][n - 1];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size();
vector<vector<int>> dp(n, vector<int>(n, 0));
for (int i = 0; i < n; ++i) {
dp[i][i] = 1;
}
for (int j = 1; j < n; ++j) {
for (int i = j - 1; i >= 0; --i) {
if (s[i] == s[j]) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][n - 1];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| func longestPalindromeSubseq(s string) int {
n := len(s)
dp := make([][]int, n)
for i := 0; i < n; i++ {
dp[i] = make([]int, n)
dp[i][i] = 1
}
for j := 1; j < n; j++ {
for i := j - 1; i >= 0; i-- {
if s[i] == s[j] {
dp[i][j] = dp[i+1][j-1] + 2
} else {
dp[i][j] = max(dp[i+1][j], dp[i][j-1])
}
}
}
return dp[0][n-1]
}
|