Description#
A string is considered beautiful if it satisfies the following conditions:
- Each of the 5 English vowels (
'a'
, 'e'
, 'i'
, 'o'
, 'u'
) must appear at least once in it. - The letters must be sorted in alphabetical order (i.e. all
'a'
s before 'e'
s, all 'e'
s before 'i'
s, etc.).
For example, strings "aeiou"
and "aaaaaaeiiiioou"
are considered beautiful, but "uaeio"
, "aeoiu"
, and "aaaeeeooo"
are not beautiful.
Given a string word
consisting of English vowels, return the length of the longest beautiful substring of word
. If no such substring exists, return 0
.
A substring is a contiguous sequence of characters in a string.
Example 1:
Input: word = "aeiaaioaaaaeiiiiouuuooaauuaeiu"
Output: 13
Explanation: The longest beautiful substring in word is "aaaaeiiiiouuu" of length 13.
Example 2:
Input: word = "aeeeiiiioooauuuaeiou"
Output: 5
Explanation: The longest beautiful substring in word is "aeiou" of length 5.
Example 3:
Input: word = "a"
Output: 0
Explanation: There is no beautiful substring, so return 0.
Constraints:
1 <= word.length <= 5 * 105
word
consists of characters 'a'
, 'e'
, 'i'
, 'o'
, and 'u'
.
Solutions#
Solution 1: Two Pointers + Simulation#
We can first transform the string word
. For example, for word="aaaeiouu"
, we can transform it into data items ('a', 3)
, ('e', 1)
, ('i', 1)
, ('o', 1)
, ('u', 2)
and store them in an array arr
. Each data item’s first element represents a vowel, and the second element represents the number of times the vowel appears consecutively. This transformation can be implemented using two pointers.
Next, we traverse the array arr
, each time taking $5$ adjacent data items, and judge whether the vowels in these data items are 'a'
, 'e'
, 'i'
, 'o'
, 'u'
respectively. If so, calculate the total number of times the vowels appear in these $5$ data items, which is the length of the current beautiful substring, and update the maximum value of the answer.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Where $n$ is the length of the string word
.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| class Solution:
def longestBeautifulSubstring(self, word: str) -> int:
arr = []
n = len(word)
i = 0
while i < n:
j = i
while j < n and word[j] == word[i]:
j += 1
arr.append((word[i], j - i))
i = j
ans = 0
for i in range(len(arr) - 4):
a, b, c, d, e = arr[i : i + 5]
if a[0] + b[0] + c[0] + d[0] + e[0] == "aeiou":
ans = max(ans, a[1] + b[1] + c[1] + d[1] + e[1])
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
| class Solution {
public int longestBeautifulSubstring(String word) {
int n = word.length();
List<Node> arr = new ArrayList<>();
for (int i = 0; i < n;) {
int j = i;
while (j < n && word.charAt(j) == word.charAt(i)) {
++j;
}
arr.add(new Node(word.charAt(i), j - i));
i = j;
}
int ans = 0;
for (int i = 0; i < arr.size() - 4; ++i) {
Node a = arr.get(i), b = arr.get(i + 1), c = arr.get(i + 2), d = arr.get(i + 3),
e = arr.get(i + 4);
if (a.c == 'a' && b.c == 'e' && c.c == 'i' && d.c == 'o' && e.c == 'u') {
ans = Math.max(ans, a.v + b.v + c.v + d.v + e.v);
}
}
return ans;
}
}
class Node {
char c;
int v;
Node(char c, int v) {
this.c = c;
this.v = v;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
| class Solution {
public:
int longestBeautifulSubstring(string word) {
vector<pair<char, int>> arr;
int n = word.size();
for (int i = 0; i < n;) {
int j = i;
while (j < n && word[j] == word[i]) ++j;
arr.push_back({word[i], j - i});
i = j;
}
int ans = 0;
for (int i = 0; i < (int) arr.size() - 4; ++i) {
auto& [a, v1] = arr[i];
auto& [b, v2] = arr[i + 1];
auto& [c, v3] = arr[i + 2];
auto& [d, v4] = arr[i + 3];
auto& [e, v5] = arr[i + 4];
if (a == 'a' && b == 'e' && c == 'i' && d == 'o' && e == 'u') {
ans = max(ans, v1 + v2 + v3 + v4 + v5);
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
| func longestBeautifulSubstring(word string) (ans int) {
arr := []pair{}
n := len(word)
for i := 0; i < n; {
j := i
for j < n && word[j] == word[i] {
j++
}
arr = append(arr, pair{word[i], j - i})
i = j
}
for i := 0; i < len(arr)-4; i++ {
a, b, c, d, e := arr[i], arr[i+1], arr[i+2], arr[i+3], arr[i+4]
if a.c == 'a' && b.c == 'e' && c.c == 'i' && d.c == 'o' && e.c == 'u' {
ans = max(ans, a.v+b.v+c.v+d.v+e.v)
}
}
return
}
type pair struct {
c byte
v int
}
|