Description#
Given a string containing just the characters '('
and ')'
, return the length of the longest valid (well-formed) parentheses substring.
Example 1:
Input: s = "(()"
Output: 2
Explanation: The longest valid parentheses substring is "()".
Example 2:
Input: s = ")()())"
Output: 4
Explanation: The longest valid parentheses substring is "()()".
Example 3:
Input: s = ""
Output: 0
Constraints:
0 <= s.length <= 3 * 104
s[i]
is '('
, or ')'
.
Solutions#
Solution 1: Dynamic Programming#
We define $f[i]$ to be the length of the longest valid parentheses that ends with $s[i-1]$, and the answer is $max(f[i])$.
When $i \lt 2$, the length of the string is less than $2$, and there is no valid parentheses, so $f[i] = 0$.
When $i \ge 2$, we consider the length of the longest valid parentheses that ends with $s[i-1]$, that is, $f[i]$:
- If $s[i-1]$ is a left parenthesis, then the length of the longest valid parentheses that ends with $s[i-1]$ must be $0$, so $f[i] = 0$.
- If $s[i-1]$ is a right parenthesis, there are the following two cases:
- If $s[i-2]$ is a left parenthesis, then the length of the longest valid parentheses that ends with $s[i-1]$ is $f[i-2] + 2$.
- If $s[i-2]$ is a right parenthesis, then the length of the longest valid parentheses that ends with $s[i-1]$ is $f[i-1] + 2$, but we also need to consider whether $s[i-f[i-1]-2]$ is a left parenthesis. If it is a left parenthesis, then the length of the longest valid parentheses that ends with $s[i-1]$ is $f[i-1] + 2 + f[i-f[i-1]-2]$.
Therefore, we can get the state transition equation:
$$
\begin{cases}
f[i] = 0, & \text{if } s[i-1] = ‘(’,\
f[i] = f[i-2] + 2, & \text{if } s[i-1] = ‘)’ \text{ and } s[i-2] = ‘(’,\
f[i] = f[i-1] + 2 + f[i-f[i-1]-2], & \text{if } s[i-1] = ‘)’ \text{ and } s[i-2] = ‘)’ \text{ and } s[i-f[i-1]-2] = ‘(’,\
\end{cases}
$$
Finally, we only need to return $max(f)$.
The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n$ is the length of the string.
1
2
3
4
5
6
7
8
9
10
11
12
13
| class Solution:
def longestValidParentheses(self, s: str) -> int:
n = len(s)
f = [0] * (n + 1)
for i, c in enumerate(s, 1):
if c == ")":
if i > 1 and s[i - 2] == "(":
f[i] = f[i - 2] + 2
else:
j = i - f[i - 1] - 1
if j and s[j - 1] == "(":
f[i] = f[i - 1] + 2 + f[j - 1]
return max(f)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| class Solution {
public int longestValidParentheses(String s) {
int n = s.length();
int[] f = new int[n + 1];
int ans = 0;
for (int i = 2; i <= n; ++i) {
if (s.charAt(i - 1) == ')') {
if (s.charAt(i - 2) == '(') {
f[i] = f[i - 2] + 2;
} else {
int j = i - f[i - 1] - 1;
if (j > 0 && s.charAt(j - 1) == '(') {
f[i] = f[i - 1] + 2 + f[j - 1];
}
}
ans = Math.max(ans, f[i]);
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| class Solution {
public:
int longestValidParentheses(string s) {
int n = s.size();
int f[n + 1];
memset(f, 0, sizeof(f));
for (int i = 2; i <= n; ++i) {
if (s[i - 1] == ')') {
if (s[i - 2] == '(') {
f[i] = f[i - 2] + 2;
} else {
int j = i - f[i - 1] - 1;
if (j && s[j - 1] == '(') {
f[i] = f[i - 1] + 2 + f[j - 1];
}
}
}
}
return *max_element(f, f + n + 1);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| func longestValidParentheses(s string) int {
n := len(s)
f := make([]int, n+1)
for i := 2; i <= n; i++ {
if s[i-1] == ')' {
if s[i-2] == '(' {
f[i] = f[i-2] + 2
} else if j := i - f[i-1] - 1; j > 0 && s[j-1] == '(' {
f[i] = f[i-1] + 2 + f[j-1]
}
}
}
return slices.Max(f)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| function longestValidParentheses(s: string): number {
const n = s.length;
const f: number[] = new Array(n + 1).fill(0);
for (let i = 2; i <= n; ++i) {
if (s[i - 1] === ')') {
if (s[i - 2] === '(') {
f[i] = f[i - 2] + 2;
} else {
const j = i - f[i - 1] - 1;
if (j && s[j - 1] === '(') {
f[i] = f[i - 1] + 2 + f[j - 1];
}
}
}
}
return Math.max(...f);
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
| impl Solution {
pub fn longest_valid_parentheses(s: String) -> i32 {
let mut ans = 0;
let mut f = vec![0; s.len() + 1];
for i in 2..=s.len() {
if
s
.chars()
.nth(i - 1)
.unwrap() == ')'
{
if
s
.chars()
.nth(i - 2)
.unwrap() == '('
{
f[i] = f[i - 2] + 2;
} else if
(i as i32) - f[i - 1] - 1 > 0 &&
s
.chars()
.nth(i - (f[i - 1] as usize) - 2)
.unwrap() == '('
{
f[i] = f[i - 1] + 2 + f[i - (f[i - 1] as usize) - 2];
}
ans = ans.max(f[i]);
}
}
ans
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| /**
* @param {string} s
* @return {number}
*/
var longestValidParentheses = function (s) {
const n = s.length;
const f = new Array(n + 1).fill(0);
for (let i = 2; i <= n; ++i) {
if (s[i - 1] === ')') {
if (s[i - 2] === '(') {
f[i] = f[i - 2] + 2;
} else {
const j = i - f[i - 1] - 1;
if (j && s[j - 1] === '(') {
f[i] = f[i - 1] + 2 + f[j - 1];
}
}
}
}
return Math.max(...f);
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| public class Solution {
public int LongestValidParentheses(string s) {
int n = s.Length;
int[] f = new int[n + 1];
int ans = 0;
for (int i = 2; i <= n; ++i) {
if (s[i - 1] == ')') {
if (s[i - 2] == '(') {
f[i] = f[i - 2] + 2;
} else {
int j = i - f[i - 1] - 1;
if (j > 0 && s[j - 1] == '(') {
f[i] = f[i - 1] + 2 + f[j - 1];
}
}
ans = Math.Max(ans, f[i]);
}
}
return ans;
}
}
|
Solution 2: Using Stack#
- Maintain a stack to store the indices of left parentheses. Initialize the bottom element of the stack with the value -1 to facilitate the calculation of the length of valid parentheses.
- Iterate through each element of the string:
- If the character is a left parenthesis, push the index of the character onto the stack.
- If the character is a right parenthesis, pop an element from the stack to represent that we have found a valid pair of parentheses.
- If the stack is empty, it means we couldn’t find a left parenthesis to match the right parenthesis. In this case, push the index of the character as a new starting point.
- If the stack is not empty, calculate the length of the valid parentheses and update it.
Summary:
The key to this algorithm is to maintain a stack to store the indices of left parentheses and then update the length of the valid substring of parentheses by pushing and popping elements.
The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n$ is the length of the string.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| class Solution:
def longestValidParentheses(self, s: str) -> int:
stack = [-1]
ans = 0
for i in range(len(s)):
if s[i] == '(':
stack.append(i)
else:
stack.pop()
if not stack:
stack.append(i)
else:
ans = max(ans, i - stack[-1])
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| func longestValidParentheses(s string) int {
ans := 0
stack := []int{-1}
for i, v := range s {
if v == '(' {
stack = append(stack, i)
} else {
stack = stack[:len(stack)-1]
if len(stack) == 0 {
stack = append(stack, i)
} else {
if ans < i-stack[len(stack)-1] {
ans = i - stack[len(stack)-1]
}
}
}
}
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| function longestValidParentheses(s: string): number {
let max_length: number = 0;
const stack: number[] = [-1];
for (let i = 0; i < s.length; i++) {
if (s.charAt(i) == '(') {
stack.push(i);
} else {
stack.pop();
if (stack.length === 0) {
stack.push(i);
} else {
max_length = Math.max(max_length, i - stack[stack.length - 1]);
}
}
}
return max_length;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| impl Solution {
pub fn longest_valid_parentheses(s: String) -> i32 {
let mut stack = vec![-1];
let mut res = 0;
for i in 0..s.len() {
if let Some('(') = s.chars().nth(i) {
stack.push(i as i32);
} else {
stack.pop().unwrap();
if stack.is_empty() {
stack.push(i as i32);
} else {
res = std::cmp::max(res, (i as i32) - stack.last().unwrap());
}
}
}
res
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| /**
* @param {string} s
* @return {number}
*/
var longestValidParentheses = function (s) {
let ans = 0;
const stack = [-1];
for (i = 0; i < s.length; i++) {
if (s.charAt(i) === '(') {
stack.push(i);
} else {
stack.pop();
if (stack.length === 0) {
stack.push(i);
} else {
ans = Math.max(ans, i - stack[stack.length - 1]);
}
}
}
return ans;
};
|