Description#
Given the root
of a binary tree and an array of TreeNode
objects nodes
, return the lowest common ancestor (LCA) of all the nodes in nodes
. All the nodes will exist in the tree, and all values of the tree's nodes are unique.
Extending the definition of LCA on Wikipedia: "The lowest common ancestor of n
nodes p1
, p2
, ..., pn
in a binary tree T
is the lowest node that has every pi
as a descendant (where we allow a node to be a descendant of itself) for every valid i
". A descendant of a node x
is a node y
that is on the path from node x
to some leaf node.
Example 1:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], nodes = [4,7]
Output: 2
Explanation: The lowest common ancestor of nodes 4 and 7 is node 2.
Example 2:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], nodes = [1]
Output: 1
Explanation: The lowest common ancestor of a single node is the node itself.
Example 3:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], nodes = [7,6,2,4]
Output: 5
Explanation: The lowest common ancestor of the nodes 7, 6, 2, and 4 is node 5.
Constraints:
- The number of nodes in the tree is in the range
[1, 104]
. -109 <= Node.val <= 109
- All
Node.val
are unique. - All
nodes[i]
will exist in the tree. - All
nodes[i]
are distinct.
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
| # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def lowestCommonAncestor(
self, root: 'TreeNode', nodes: 'List[TreeNode]'
) -> 'TreeNode':
def dfs(root):
if root is None or root.val in s:
return root
left, right = dfs(root.left), dfs(root.right)
if left and right:
return root
return left or right
s = {node.val for node in nodes}
return dfs(root)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
| /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
private Set<Integer> s = new HashSet<>();
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode[] nodes) {
for (TreeNode node : nodes) {
s.add(node.val);
}
return dfs(root);
}
private TreeNode dfs(TreeNode root) {
if (root == null || s.contains(root.val)) {
return root;
}
TreeNode left = dfs(root.left);
TreeNode right = dfs(root.right);
if (left == null) {
return right;
}
if (right == null) {
return left;
}
return root;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
| /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, vector<TreeNode*>& nodes) {
unordered_set<int> s;
for (auto node : nodes) s.insert(node->val);
function<TreeNode*(TreeNode*)> dfs = [&](TreeNode* root) -> TreeNode* {
if (!root || s.count(root->val)) return root;
auto left = dfs(root->left);
auto right = dfs(root->right);
if (!left) return right;
if (!right) return left;
return root;
};
return dfs(root);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
| /**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {TreeNode} root
* @param {TreeNode[]} nodes
* @return {TreeNode}
*/
var lowestCommonAncestor = function (root, nodes) {
const s = new Set();
for (const node of nodes) {
s.add(node.val);
}
function dfs(root) {
if (!root || s.has(root.val)) {
return root;
}
const [left, right] = [dfs(root.left), dfs(root.right)];
if (left && right) {
return root;
}
return left || right;
}
return dfs(root);
};
|