1787. Make the XOR of All Segments Equal to Zero

Description

You are given an array nums​​​ and an integer k​​​​​. The XOR of a segment [left, right] where left <= right is the XOR of all the elements with indices between left and right, inclusive: nums[left] XOR nums[left+1] XOR ... XOR nums[right].

Return the minimum number of elements to change in the array such that the XOR of all segments of size k​​​​​​ is equal to zero.

 

Example 1:

Input: nums = [1,2,0,3,0], k = 1
Output: 3
Explanation: Modify the array from [1,2,0,3,0] to from [0,0,0,0,0].

Example 2:

Input: nums = [3,4,5,2,1,7,3,4,7], k = 3
Output: 3
Explanation: Modify the array from [3,4,5,2,1,7,3,4,7] to [3,4,7,3,4,7,3,4,7].

Example 3:

Input: nums = [1,2,4,1,2,5,1,2,6], k = 3
Output: 3
Explanation: Modify the array from [1,2,4,1,2,5,1,2,6] to [1,2,3,1,2,3,1,2,3].

 

Constraints:

  • 1 <= k <= nums.length <= 2000
  • ​​​​​​0 <= nums[i] < 210

Solutions

Solution 1

Python Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
class Solution:
    def minChanges(self, nums: List[int], k: int) -> int:
        n = 1 << 10
        cnt = [Counter() for _ in range(k)]
        size = [0] * k
        for i, v in enumerate(nums):
            cnt[i % k][v] += 1
            size[i % k] += 1
        f = [inf] * n
        f[0] = 0
        for i in range(k):
            g = [min(f) + size[i]] * n
            for j in range(n):
                for v, c in cnt[i].items():
                    g[j] = min(g[j], f[j ^ v] + size[i] - c)
            f = g
        return f[0]

Java Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class Solution {
    public int minChanges(int[] nums, int k) {
        int n = 1 << 10;
        Map<Integer, Integer>[] cnt = new Map[k];
        Arrays.setAll(cnt, i -> new HashMap<>());
        int[] size = new int[k];
        for (int i = 0; i < nums.length; ++i) {
            int j = i % k;
            cnt[j].merge(nums[i], 1, Integer::sum);
            size[j]++;
        }
        int[] f = new int[n];
        final int inf = 1 << 30;
        Arrays.fill(f, inf);
        f[0] = 0;
        for (int i = 0; i < k; ++i) {
            int[] g = new int[n];
            Arrays.fill(g, min(f) + size[i]);
            for (int j = 0; j < n; ++j) {
                for (var e : cnt[i].entrySet()) {
                    int v = e.getKey(), c = e.getValue();
                    g[j] = Math.min(g[j], f[j ^ v] + size[i] - c);
                }
            }
            f = g;
        }
        return f[0];
    }

    private int min(int[] arr) {
        int mi = arr[0];
        for (int v : arr) {
            mi = Math.min(mi, v);
        }
        return mi;
    }
}

C++ Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public:
    int minChanges(vector<int>& nums, int k) {
        int n = 1 << 10;
        unordered_map<int, int> cnt[k];
        vector<int> size(k);
        for (int i = 0; i < nums.size(); ++i) {
            cnt[i % k][nums[i]]++;
            size[i % k]++;
        }
        vector<int> f(n, 1 << 30);
        f[0] = 0;
        for (int i = 0; i < k; ++i) {
            int mi = *min_element(f.begin(), f.end());
            vector<int> g(n, mi + size[i]);
            for (int j = 0; j < n; ++j) {
                for (auto& [v, c] : cnt[i]) {
                    g[j] = min(g[j], f[j ^ v] + size[i] - c);
                }
            }
            f = move(g);
        }
        return f[0];
    }
};

Go Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
func minChanges(nums []int, k int) int {
	n := 1 << 10
	cnt := make([]map[int]int, k)
	for i := range cnt {
		cnt[i] = map[int]int{}
	}
	size := make([]int, k)
	for i, v := range nums {
		cnt[i%k][v]++
		size[i%k]++
	}
	f := make([]int, n)
	for i := 1; i < n; i++ {
		f[i] = 0x3f3f3f3f
	}
	for i, sz := range size {
		g := make([]int, n)
		x := slices.Min(f) + sz
		for i := range g {
			g[i] = x
		}
		for j := 0; j < n; j++ {
			for v, c := range cnt[i] {
				g[j] = min(g[j], f[j^v]+sz-c)
			}
		}
		f = g
	}
	return f[0]
}