1911. Maximum Alternating Subsequence Sum

Description

The alternating sum of a 0-indexed array is defined as the sum of the elements at even indices minus the sum of the elements at odd indices.

  • For example, the alternating sum of [4,2,5,3] is (4 + 5) - (2 + 3) = 4.

Given an array nums, return the maximum alternating sum of any subsequence of nums (after reindexing the elements of the subsequence).

    A subsequence of an array is a new array generated from the original array by deleting some elements (possibly none) without changing the remaining elements' relative order. For example, [2,7,4] is a subsequence of [4,2,3,7,2,1,4] (the underlined elements), while [2,4,2] is not.

     

    Example 1:

    Input: nums = [4,2,5,3]
    Output: 7
    Explanation: It is optimal to choose the subsequence [4,2,5] with alternating sum (4 + 5) - 2 = 7.
    

    Example 2:

    Input: nums = [5,6,7,8]
    Output: 8
    Explanation: It is optimal to choose the subsequence [8] with alternating sum 8.
    

    Example 3:

    Input: nums = [6,2,1,2,4,5]
    Output: 10
    Explanation: It is optimal to choose the subsequence [6,1,5] with alternating sum (6 + 5) - 1 = 10.
    

     

    Constraints:

    • 1 <= nums.length <= 105
    • 1 <= nums[i] <= 105

    Solutions

    Solution 1

    Python Code
    1
    2
    3
    4
    5
    6
    7
    8
    9
    
    class Solution:
        def maxAlternatingSum(self, nums: List[int]) -> int:
            n = len(nums)
            f = [0] * (n + 1)
            g = [0] * (n + 1)
            for i, x in enumerate(nums, 1):
                f[i] = max(g[i - 1] - x, f[i - 1])
                g[i] = max(f[i - 1] + x, g[i - 1])
            return max(f[n], g[n])
    

    Java Code
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    
    class Solution {
        public long maxAlternatingSum(int[] nums) {
            int n = nums.length;
            long[] f = new long[n + 1];
            long[] g = new long[n + 1];
            for (int i = 1; i <= n; ++i) {
                f[i] = Math.max(g[i - 1] - nums[i - 1], f[i - 1]);
                g[i] = Math.max(f[i - 1] + nums[i - 1], g[i - 1]);
            }
            return Math.max(f[n], g[n]);
        }
    }
    

    C++ Code
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    
    class Solution {
    public:
        long long maxAlternatingSum(vector<int>& nums) {
            int n = nums.size();
            vector<long long> f(n + 1), g(n + 1);
            for (int i = 1; i <= n; ++i) {
                f[i] = max(g[i - 1] - nums[i - 1], f[i - 1]);
                g[i] = max(f[i - 1] + nums[i - 1], g[i - 1]);
            }
            return max(f[n], g[n]);
        }
    };
    

    Go Code
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    
    func maxAlternatingSum(nums []int) int64 {
    	n := len(nums)
    	f := make([]int, n+1)
    	g := make([]int, n+1)
    	for i, x := range nums {
    		i++
    		f[i] = max(g[i-1]-x, f[i-1])
    		g[i] = max(f[i-1]+x, g[i-1])
    	}
    	return int64(max(f[n], g[n]))
    }
    

    TypeScript Code
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    
    function maxAlternatingSum(nums: number[]): number {
        const n = nums.length;
        const f: number[] = new Array(n + 1).fill(0);
        const g = f.slice();
        for (let i = 1; i <= n; ++i) {
            f[i] = Math.max(g[i - 1] + nums[i - 1], f[i - 1]);
            g[i] = Math.max(f[i - 1] - nums[i - 1], g[i - 1]);
        }
        return Math.max(f[n], g[n]);
    }
    

    Solution 2

    Python Code
    1
    2
    3
    4
    5
    6
    
    class Solution:
        def maxAlternatingSum(self, nums: List[int]) -> int:
            f = g = 0
            for x in nums:
                f, g = max(g - x, f), max(f + x, g)
            return max(f, g)
    

    Java Code
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    
    class Solution {
        public long maxAlternatingSum(int[] nums) {
            long f = 0, g = 0;
            for (int x : nums) {
                long ff = Math.max(g - x, f);
                long gg = Math.max(f + x, g);
                f = ff;
                g = gg;
            }
            return Math.max(f, g);
        }
    }
    

    C++ Code
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    
    class Solution {
    public:
        long long maxAlternatingSum(vector<int>& nums) {
            long long f = 0, g = 0;
            for (int& x : nums) {
                long ff = max(g - x, f), gg = max(f + x, g);
                f = ff, g = gg;
            }
            return max(f, g);
        }
    };
    

    Go Code
    1
    2
    3
    4
    5
    6
    7
    
    func maxAlternatingSum(nums []int) int64 {
    	var f, g int
    	for _, x := range nums {
    		f, g = max(g-x, f), max(f+x, g)
    	}
    	return int64(max(f, g))
    }
    

    TypeScript Code
    1
    2
    3
    4
    5
    6
    7
    
    function maxAlternatingSum(nums: number[]): number {
        let [f, g] = [0, 0];
        for (const x of nums) {
            [f, g] = [Math.max(g - x, f), Math.max(f + x, g)];
        }
        return g;
    }