Description#
You are given an n x n
integer matrix
. You can do the following operation any number of times:
- Choose any two adjacent elements of
matrix
and multiply each of them by -1
.
Two elements are considered adjacent if and only if they share a border.
Your goal is to maximize the summation of the matrix's elements. Return the maximum sum of the matrix's elements using the operation mentioned above.
Example 1:
Input: matrix = [[1,-1],[-1,1]]
Output: 4
Explanation: We can follow the following steps to reach sum equals 4:
- Multiply the 2 elements in the first row by -1.
- Multiply the 2 elements in the first column by -1.
Example 2:
Input: matrix = [[1,2,3],[-1,-2,-3],[1,2,3]]
Output: 16
Explanation: We can follow the following step to reach sum equals 16:
- Multiply the 2 last elements in the second row by -1.
Constraints:
n == matrix.length == matrix[i].length
2 <= n <= 250
-105 <= matrix[i][j] <= 105
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
10
11
12
13
| class Solution:
def maxMatrixSum(self, matrix: List[List[int]]) -> int:
s = cnt = 0
mi = inf
for row in matrix:
for v in row:
s += abs(v)
mi = min(mi, abs(v))
if v < 0:
cnt += 1
if cnt % 2 == 0 or mi == 0:
return s
return s - mi * 2
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| class Solution {
public long maxMatrixSum(int[][] matrix) {
long s = 0;
int cnt = 0;
int mi = Integer.MAX_VALUE;
for (var row : matrix) {
for (var v : row) {
s += Math.abs(v);
mi = Math.min(mi, Math.abs(v));
if (v < 0) {
++cnt;
}
}
}
if (cnt % 2 == 0 || mi == 0) {
return s;
}
return s - mi * 2;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| class Solution {
public:
long long maxMatrixSum(vector<vector<int>>& matrix) {
long long s = 0;
int cnt = 0, mi = INT_MAX;
for (auto& row : matrix) {
for (int& v : row) {
s += abs(v);
mi = min(mi, abs(v));
cnt += v < 0;
}
}
if (cnt % 2 == 0 || mi == 0) return s;
return s - mi * 2;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
| func maxMatrixSum(matrix [][]int) int64 {
s := 0
cnt, mi := 0, math.MaxInt32
for _, row := range matrix {
for _, v := range row {
s += abs(v)
mi = min(mi, abs(v))
if v < 0 {
cnt++
}
}
}
if cnt%2 == 1 {
s -= mi * 2
}
return int64(s)
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| /**
* @param {number[][]} matrix
* @return {number}
*/
var maxMatrixSum = function (matrix) {
let cnt = 0;
let s = 0;
let mi = Infinity;
for (const row of matrix) {
for (const v of row) {
s += Math.abs(v);
mi = Math.min(mi, Math.abs(v));
cnt += v < 0;
}
}
if (cnt % 2 == 0) {
return s;
}
return s - mi * 2;
};
|