Description#
You are given an integer array banned
and two integers n
and maxSum
. You are choosing some number of integers following the below rules:
- The chosen integers have to be in the range
[1, n]
. - Each integer can be chosen at most once.
- The chosen integers should not be in the array
banned
. - The sum of the chosen integers should not exceed
maxSum
.
Return the maximum number of integers you can choose following the mentioned rules.
Example 1:
Input: banned = [1,4,6], n = 6, maxSum = 4
Output: 1
Explanation: You can choose the integer 3.
3 is in the range [1, 6], and do not appear in banned. The sum of the chosen integers is 3, which does not exceed maxSum.
Example 2:
Input: banned = [4,3,5,6], n = 7, maxSum = 18
Output: 3
Explanation: You can choose the integers 1, 2, and 7.
All these integers are in the range [1, 7], all do not appear in banned, and their sum is 18, which does not exceed maxSum.
Constraints:
1 <= banned.length <= 105
1 <= banned[i] <= n <= 109
1 <= maxSum <= 1015
Solutions#
Solution 1: Deduplication + Sorting + Binary Search#
We can add $0$ and $n + 1$ to the array banned
, then deduplicate and sort the array banned
.
Next, we enumerate every two adjacent elements $i$ and $j$ in the array banned
. The range of selectable integers is $[i + 1, j - 1]$. We use binary search to enumerate the number of elements we can select in this range, find the maximum number of selectable elements, and then add it to $ans$. At the same time, we subtract the sum of these elements from maxSum
. If maxSum
is less than $0$, we break the loop. Return the answer.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Where $n$ is the length of the array banned
.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| class Solution:
def maxCount(self, banned: List[int], n: int, maxSum: int) -> int:
banned.extend([0, n + 1])
ban = sorted(set(banned))
ans = 0
for i, j in pairwise(ban):
left, right = 0, j - i - 1
while left < right:
mid = (left + right + 1) >> 1
if (i + 1 + i + mid) * mid // 2 <= maxSum:
left = mid
else:
right = mid - 1
ans += left
maxSum -= (i + 1 + i + left) * left // 2
if maxSum <= 0:
break
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
| class Solution {
public int maxCount(int[] banned, int n, long maxSum) {
Set<Integer> black = new HashSet<>();
black.add(0);
black.add(n + 1);
for (int x : banned) {
black.add(x);
}
List<Integer> ban = new ArrayList<>(black);
Collections.sort(ban);
int ans = 0;
for (int k = 1; k < ban.size(); ++k) {
int i = ban.get(k - 1), j = ban.get(k);
int left = 0, right = j - i - 1;
while (left < right) {
int mid = (left + right + 1) >>> 1;
if ((i + 1 + i + mid) * 1L * mid / 2 <= maxSum) {
left = mid;
} else {
right = mid - 1;
}
}
ans += left;
maxSum -= (i + 1 + i + left) * 1L * left / 2;
if (maxSum <= 0) {
break;
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
| class Solution {
public:
int maxCount(vector<int>& banned, int n, long long maxSum) {
banned.push_back(0);
banned.push_back(n + 1);
sort(banned.begin(), banned.end());
banned.erase(unique(banned.begin(), banned.end()), banned.end());
int ans = 0;
for (int k = 1; k < banned.size(); ++k) {
int i = banned[k - 1], j = banned[k];
int left = 0, right = j - i - 1;
while (left < right) {
int mid = left + ((right - left + 1) / 2);
if ((i + 1 + i + mid) * 1LL * mid / 2 <= maxSum) {
left = mid;
} else {
right = mid - 1;
}
}
ans += left;
maxSum -= (i + 1 + i + left) * 1LL * left / 2;
if (maxSum <= 0) {
break;
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
| func maxCount(banned []int, n int, maxSum int64) (ans int) {
banned = append(banned, []int{0, n + 1}...)
sort.Ints(banned)
ban := []int{}
for i, x := range banned {
if i > 0 && x == banned[i-1] {
continue
}
ban = append(ban, x)
}
for k := 1; k < len(ban); k++ {
i, j := ban[k-1], ban[k]
left, right := 0, j-i-1
for left < right {
mid := (left + right + 1) >> 1
if int64((i+1+i+mid)*mid/2) <= maxSum {
left = mid
} else {
right = mid - 1
}
}
ans += left
maxSum -= int64((i + 1 + i + left) * left / 2)
if maxSum <= 0 {
break
}
}
return
}
|