Description#
Given an array nums
and an integer target
, return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target
.
Example 1:
Input: nums = [1,1,1,1,1], target = 2
Output: 2
Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2).
Example 2:
Input: nums = [-1,3,5,1,4,2,-9], target = 6
Output: 2
Explanation: There are 3 subarrays with sum equal to 6.
([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping.
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
0 <= target <= 106
Solutions#
Solution 1: Greedy + Prefix Sum + Hash Table#
We traverse the array $nums$, using the method of prefix sum + hash table, to find subarrays with a sum of $target$. If found, we increment the answer by one, then we set the prefix sum to $0$ and continue to traverse the array $nums$ until the entire array is traversed.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $nums$.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| class Solution:
def maxNonOverlapping(self, nums: List[int], target: int) -> int:
ans = 0
i, n = 0, len(nums)
while i < n:
s = 0
vis = {0}
while i < n:
s += nums[i]
if s - target in vis:
ans += 1
break
i += 1
vis.add(s)
i += 1
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| class Solution {
public int maxNonOverlapping(int[] nums, int target) {
int ans = 0, n = nums.length;
for (int i = 0; i < n; ++i) {
Set<Integer> vis = new HashSet<>();
int s = 0;
vis.add(0);
while (i < n) {
s += nums[i];
if (vis.contains(s - target)) {
++ans;
break;
}
++i;
vis.add(s);
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| class Solution {
public:
int maxNonOverlapping(vector<int>& nums, int target) {
int ans = 0, n = nums.size();
for (int i = 0; i < n; ++i) {
unordered_set<int> vis{{0}};
int s = 0;
while (i < n) {
s += nums[i];
if (vis.count(s - target)) {
++ans;
break;
}
++i;
vis.insert(s);
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| func maxNonOverlapping(nums []int, target int) (ans int) {
n := len(nums)
for i := 0; i < n; i++ {
s := 0
vis := map[int]bool{0: true}
for ; i < n; i++ {
s += nums[i]
if vis[s-target] {
ans++
break
}
vis[s] = true
}
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| function maxNonOverlapping(nums: number[], target: number): number {
const n = nums.length;
let ans = 0;
for (let i = 0; i < n; ++i) {
let s = 0;
const vis: Set<number> = new Set();
vis.add(0);
for (; i < n; ++i) {
s += nums[i];
if (vis.has(s - target)) {
++ans;
break;
}
vis.add(s);
}
}
return ans;
}
|