Description#
Alice and Bob are opponents in an archery competition. The competition has set the following rules:
- Alice first shoots
numArrows
arrows and then Bob shoots numArrows
arrows. - The points are then calculated as follows:
- The target has integer scoring sections ranging from
0
to 11
inclusive. - For each section of the target with score
k
(in between 0
to 11
), say Alice and Bob have shot ak
and bk
arrows on that section respectively. If ak >= bk
, then Alice takes k
points. If ak < bk
, then Bob takes k
points. - However, if
ak == bk == 0
, then nobody takes k
points.
For example, if Alice and Bob both shot 2
arrows on the section with score 11
, then Alice takes 11
points. On the other hand, if Alice shot 0
arrows on the section with score 11
and Bob shot 2
arrows on that same section, then Bob takes 11
points.
You are given the integer numArrows
and an integer array aliceArrows
of size 12
, which represents the number of arrows Alice shot on each scoring section from 0
to 11
. Now, Bob wants to maximize the total number of points he can obtain.
Return the array bobArrows
which represents the number of arrows Bob shot on each scoring section from 0
to 11
. The sum of the values in bobArrows
should equal numArrows
.
If there are multiple ways for Bob to earn the maximum total points, return any one of them.
Example 1:
Input: numArrows = 9, aliceArrows = [1,1,0,1,0,0,2,1,0,1,2,0]
Output: [0,0,0,0,1,1,0,0,1,2,3,1]
Explanation: The table above shows how the competition is scored.
Bob earns a total point of 4 + 5 + 8 + 9 + 10 + 11 = 47.
It can be shown that Bob cannot obtain a score higher than 47 points.
Example 2:
Input: numArrows = 3, aliceArrows = [0,0,1,0,0,0,0,0,0,0,0,2]
Output: [0,0,0,0,0,0,0,0,1,1,1,0]
Explanation: The table above shows how the competition is scored.
Bob earns a total point of 8 + 9 + 10 = 27.
It can be shown that Bob cannot obtain a score higher than 27 points.
Constraints:
1 <= numArrows <= 105
aliceArrows.length == bobArrows.length == 12
0 <= aliceArrows[i], bobArrows[i] <= numArrows
sum(aliceArrows[i]) == numArrows
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| class Solution:
def maximumBobPoints(self, numArrows: int, aliceArrows: List[int]) -> List[int]:
n = len(aliceArrows)
state = 0
mx = -1
for mask in range(1 << n):
cnt = points = 0
for i, alice in enumerate(aliceArrows):
if (mask >> i) & 1:
cnt += alice + 1
points += i
if cnt <= numArrows and mx < points:
state = mask
mx = points
ans = [0] * n
for i, alice in enumerate(aliceArrows):
if (state >> i) & 1:
ans[i] = alice + 1
numArrows -= ans[i]
ans[0] = numArrows
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
| class Solution {
public int[] maximumBobPoints(int numArrows, int[] aliceArrows) {
int n = aliceArrows.length;
int mx = -1;
int state = 0;
for (int mask = 1; mask < 1 << n; ++mask) {
int cnt = 0, points = 0;
for (int i = 0; i < n; ++i) {
if (((mask >> i) & 1) == 1) {
cnt += aliceArrows[i] + 1;
points += i;
}
}
if (cnt <= numArrows && mx < points) {
state = mask;
mx = points;
}
}
int[] ans = new int[n];
for (int i = 0; i < n; ++i) {
if (((state >> i) & 1) == 1) {
ans[i] = aliceArrows[i] + 1;
numArrows -= ans[i];
}
}
ans[0] += numArrows;
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
| class Solution {
public:
vector<int> maximumBobPoints(int numArrows, vector<int>& aliceArrows) {
int n = aliceArrows.size();
int state = 0, mx = -1;
for (int mask = 1; mask < 1 << n; ++mask) {
int cnt = 0, points = 0;
for (int i = 0; i < n; ++i) {
if ((mask >> i) & 1) {
cnt += aliceArrows[i] + 1;
points += i;
}
}
if (cnt <= numArrows && mx < points) {
state = mask;
mx = points;
}
}
vector<int> ans(n);
for (int i = 0; i < n; ++i) {
if ((state >> i) & 1) {
ans[i] = aliceArrows[i] + 1;
numArrows -= ans[i];
}
}
ans[0] += numArrows;
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
| func maximumBobPoints(numArrows int, aliceArrows []int) []int {
n := len(aliceArrows)
state, mx := 0, -1
for mask := 1; mask < 1<<n; mask++ {
cnt, points := 0, 0
for i, alice := range aliceArrows {
if (mask>>i)&1 == 1 {
cnt += alice + 1
points += i
}
}
if cnt <= numArrows && mx < points {
state = mask
mx = points
}
}
ans := make([]int, n)
for i, alice := range aliceArrows {
if (state>>i)&1 == 1 {
ans[i] = alice + 1
numArrows -= ans[i]
}
}
ans[0] += numArrows
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| function maximumBobPoints(numArrows: number, aliceArrows: number[]): number[] {
const dfs = (arr: number[], i: number, c: number): number[] => {
if (i < 0 || c === 0) {
arr[0] += c;
return arr;
}
const a1 = dfs([...arr], i - 1, c);
if (c > aliceArrows[i]) {
arr[i] = aliceArrows[i] + 1;
const a2 = dfs(arr, i - 1, c - aliceArrows[i] - 1);
if (
a2.reduce((p, v, i) => p + (v > 0 ? i : 0), 0) >=
a1.reduce((p, v, i) => p + (v > 0 ? i : 0), 0)
) {
return a2;
}
}
return a1;
};
return dfs(new Array(12).fill(0), 11, numArrows);
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
| impl Solution {
fn dfs(alice_arrows: &Vec<i32>, mut res: Vec<i32>, count: i32, i: usize) -> Vec<i32> {
if i == 0 || count == 0 {
res[0] += count;
return res;
}
let r1 = Self::dfs(alice_arrows, res.clone(), count, i - 1);
if count > alice_arrows[i] {
res[i] = alice_arrows[i] + 1;
let r2 = Self::dfs(alice_arrows, res, count - alice_arrows[i] - 1, i - 1);
if
r2
.iter()
.enumerate()
.map(|(i, v)| if v > &0 { i } else { 0 })
.sum::<usize>() >
r1
.iter()
.enumerate()
.map(|(i, v)| if v > &0 { i } else { 0 })
.sum::<usize>()
{
return r2;
}
}
r1
}
pub fn maximum_bob_points(num_arrows: i32, alice_arrows: Vec<i32>) -> Vec<i32> {
Self::dfs(&alice_arrows, vec![0; 12], num_arrows, 11)
}
}
|