Description#
You are given an array of non-negative integers nums
and an integer k
. In one operation, you may choose any element from nums
and increment it by 1
.
Return the maximum product of nums
after at most k
operations. Since the answer may be very large, return it modulo 109 + 7
. Note that you should maximize the product before taking the modulo.
Example 1:
Input: nums = [0,4], k = 5
Output: 20
Explanation: Increment the first number 5 times.
Now nums = [5, 4], with a product of 5 * 4 = 20.
It can be shown that 20 is maximum product possible, so we return 20.
Note that there may be other ways to increment nums to have the maximum product.
Example 2:
Input: nums = [6,3,3,2], k = 2
Output: 216
Explanation: Increment the second number 1 time and increment the fourth number 1 time.
Now nums = [6, 4, 3, 3], with a product of 6 * 4 * 3 * 3 = 216.
It can be shown that 216 is maximum product possible, so we return 216.
Note that there may be other ways to increment nums to have the maximum product.
Constraints:
1 <= nums.length, k <= 105
0 <= nums[i] <= 106
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
10
| class Solution:
def maximumProduct(self, nums: List[int], k: int) -> int:
heapify(nums)
for _ in range(k):
heappush(nums, heappop(nums) + 1)
ans = 1
mod = 10**9 + 7
for v in nums:
ans = (ans * v) % mod
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| class Solution {
private static final int MOD = (int) 1e9 + 7;
public int maximumProduct(int[] nums, int k) {
PriorityQueue<Integer> q = new PriorityQueue<>();
for (int v : nums) {
q.offer(v);
}
while (k-- > 0) {
q.offer(q.poll() + 1);
}
long ans = 1;
while (!q.isEmpty()) {
ans = (ans * q.poll()) % MOD;
}
return (int) ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| class Solution {
public:
int maximumProduct(vector<int>& nums, int k) {
int mod = 1e9 + 7;
make_heap(nums.begin(), nums.end(), greater<int>());
while (k--) {
pop_heap(nums.begin(), nums.end(), greater<int>());
++nums.back();
push_heap(nums.begin(), nums.end(), greater<int>());
}
long long ans = 1;
for (int v : nums) ans = (ans * v) % mod;
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| func maximumProduct(nums []int, k int) int {
h := hp{nums}
for heap.Init(&h); k > 0; k-- {
h.IntSlice[0]++
heap.Fix(&h, 0)
}
ans := 1
for _, v := range nums {
ans = (ans * v) % (1e9 + 7)
}
return ans
}
type hp struct{ sort.IntSlice }
func (hp) Push(any) {}
func (hp) Pop() (_ any) { return }
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| /**
* @param {number[]} nums
* @param {number} k
* @return {number}
*/
var maximumProduct = function (nums, k) {
const n = nums.length;
let pq = new MinPriorityQueue();
for (let i = 0; i < n; i++) {
pq.enqueue(nums[i]);
}
for (let i = 0; i < k; i++) {
pq.enqueue(pq.dequeue().element + 1);
}
let ans = 1;
const limit = 10 ** 9 + 7;
for (let i = 0; i < n; i++) {
ans = (ans * pq.dequeue().element) % limit;
}
return ans;
};
|