Description#
We have n
jobs, where every job is scheduled to be done from startTime[i]
to endTime[i]
, obtaining a profit of profit[i]
.
You're given the startTime
, endTime
and profit
arrays, return the maximum profit you can take such that there are no two jobs in the subset with overlapping time range.
If you choose a job that ends at time X
you will be able to start another job that starts at time X
.
Example 1:
Input: startTime = [1,2,3,3], endTime = [3,4,5,6], profit = [50,10,40,70]
Output: 120
Explanation: The subset chosen is the first and fourth job.
Time range [1-3]+[3-6] , we get profit of 120 = 50 + 70.
Example 2:
Input: startTime = [1,2,3,4,6], endTime = [3,5,10,6,9], profit = [20,20,100,70,60]
Output: 150
Explanation: The subset chosen is the first, fourth and fifth job.
Profit obtained 150 = 20 + 70 + 60.
Example 3:
Input: startTime = [1,1,1], endTime = [2,3,4], profit = [5,6,4]
Output: 6
Constraints:
1 <= startTime.length == endTime.length == profit.length <= 5 * 104
1 <= startTime[i] < endTime[i] <= 109
1 <= profit[i] <= 104
Solutions#
Solution 1: Memoization Search + Binary Search#
First, we sort the jobs by start time in ascending order, then design a function $dfs(i)$ to represent the maximum profit that can be obtained starting from the $i$-th job. The answer is $dfs(0)$.
The calculation process of function $dfs(i)$ is as follows:
For the $i$-th job, we can choose to do it or not. If we don’t do it, the maximum profit is $dfs(i + 1)$; if we do it, we can use binary search to find the first job that starts after the end time of the $i$-th job, denoted as $j$, then the maximum profit is $profit[i] + dfs(j)$. We take the larger of the two. That is:
$$
dfs(i)=\max(dfs(i+1),profit[i]+dfs(j))
$$
Where $j$ is the smallest index that satisfies $startTime[j] \ge endTime[i]$.
In this process, we can use memoization search to save the answer of each state to avoid repeated calculations.
The time complexity is $O(n \times \log n)$, where $n$ is the number of jobs.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| class Solution:
def jobScheduling(
self, startTime: List[int], endTime: List[int], profit: List[int]
) -> int:
@cache
def dfs(i):
if i >= n:
return 0
_, e, p = jobs[i]
j = bisect_left(jobs, e, lo=i + 1, key=lambda x: x[0])
return max(dfs(i + 1), p + dfs(j))
jobs = sorted(zip(startTime, endTime, profit))
n = len(profit)
return dfs(0)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
| class Solution {
private int[][] jobs;
private int[] f;
private int n;
public int jobScheduling(int[] startTime, int[] endTime, int[] profit) {
n = profit.length;
jobs = new int[n][3];
for (int i = 0; i < n; ++i) {
jobs[i] = new int[] {startTime[i], endTime[i], profit[i]};
}
Arrays.sort(jobs, (a, b) -> a[0] - b[0]);
f = new int[n];
return dfs(0);
}
private int dfs(int i) {
if (i >= n) {
return 0;
}
if (f[i] != 0) {
return f[i];
}
int e = jobs[i][1], p = jobs[i][2];
int j = search(jobs, e, i + 1);
int ans = Math.max(dfs(i + 1), p + dfs(j));
f[i] = ans;
return ans;
}
private int search(int[][] jobs, int x, int i) {
int left = i, right = n;
while (left < right) {
int mid = (left + right) >> 1;
if (jobs[mid][0] >= x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| class Solution {
public:
int jobScheduling(vector<int>& startTime, vector<int>& endTime, vector<int>& profit) {
int n = profit.size();
vector<tuple<int, int, int>> jobs(n);
for (int i = 0; i < n; ++i) jobs[i] = {startTime[i], endTime[i], profit[i]};
sort(jobs.begin(), jobs.end());
vector<int> f(n);
function<int(int)> dfs = [&](int i) -> int {
if (i >= n) return 0;
if (f[i]) return f[i];
auto [_, e, p] = jobs[i];
tuple<int, int, int> t{e, 0, 0};
int j = lower_bound(jobs.begin() + i + 1, jobs.end(), t, [&](auto& l, auto& r) -> bool { return get<0>(l) < get<0>(r); }) - jobs.begin();
int ans = max(dfs(i + 1), p + dfs(j));
f[i] = ans;
return ans;
};
return dfs(0);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
| func jobScheduling(startTime []int, endTime []int, profit []int) int {
n := len(profit)
type tuple struct{ s, e, p int }
jobs := make([]tuple, n)
for i, p := range profit {
jobs[i] = tuple{startTime[i], endTime[i], p}
}
sort.Slice(jobs, func(i, j int) bool { return jobs[i].s < jobs[j].s })
f := make([]int, n)
var dfs func(int) int
dfs = func(i int) int {
if i >= n {
return 0
}
if f[i] != 0 {
return f[i]
}
j := sort.Search(n, func(j int) bool { return jobs[j].s >= jobs[i].e })
ans := max(dfs(i+1), jobs[i].p+dfs(j))
f[i] = ans
return ans
}
return dfs(0)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
| function jobScheduling(startTime: number[], endTime: number[], profit: number[]): number {
const n = startTime.length;
const f = new Array(n).fill(0);
const idx = new Array(n).fill(0).map((_, i) => i);
idx.sort((i, j) => startTime[i] - startTime[j]);
const search = (x: number) => {
let l = 0;
let r = n;
while (l < r) {
const mid = (l + r) >> 1;
if (startTime[idx[mid]] >= x) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
};
const dfs = (i: number): number => {
if (i >= n) {
return 0;
}
if (f[i] !== 0) {
return f[i];
}
const j = search(endTime[idx[i]]);
return (f[i] = Math.max(dfs(i + 1), dfs(j) + profit[idx[i]]));
};
return dfs(0);
}
|
Solution 2: Dynamic Programming + Binary Search#
We can also change the memoization search in Solution 1 to dynamic programming.
First, sort the jobs, this time we sort by end time in ascending order, then define $dp[i]$, which represents the maximum profit that can be obtained from the first $i$ jobs. The answer is $dp[n]$. Initialize $dp[0]=0$.
For the $i$-th job, we can choose to do it or not. If we don’t do it, the maximum profit is $dp[i]$; if we do it, we can use binary search to find the last job that ends before the start time of the $i$-th job, denoted as $j$, then the maximum profit is $profit[i] + dp[j]$. We take the larger of the two. That is:
$$
dp[i+1] = \max(dp[i], profit[i] + dp[j])
$$
Where $j$ is the largest index that satisfies $endTime[j] \leq startTime[i]$.
The time complexity is $O(n \times \log n)$, where $n$ is the number of jobs.
Similar problems:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| class Solution:
def jobScheduling(
self, startTime: List[int], endTime: List[int], profit: List[int]
) -> int:
@cache
def dfs(i: int) -> int:
if i >= n:
return 0
j = bisect_left(idx, endTime[idx[i]], key=lambda i: startTime[i])
return max(dfs(i + 1), profit[idx[i]] + dfs(j))
n = len(startTime)
idx = sorted(range(n), key=lambda i: startTime[i])
return dfs(0)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
| class Solution {
public int jobScheduling(int[] startTime, int[] endTime, int[] profit) {
int n = profit.length;
int[][] jobs = new int[n][3];
for (int i = 0; i < n; ++i) {
jobs[i] = new int[] {startTime[i], endTime[i], profit[i]};
}
Arrays.sort(jobs, (a, b) -> a[1] - b[1]);
int[] dp = new int[n + 1];
for (int i = 0; i < n; ++i) {
int j = search(jobs, jobs[i][0], i);
dp[i + 1] = Math.max(dp[i], dp[j] + jobs[i][2]);
}
return dp[n];
}
private int search(int[][] jobs, int x, int n) {
int left = 0, right = n;
while (left < right) {
int mid = (left + right) >> 1;
if (jobs[mid][1] > x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| class Solution {
public:
int jobScheduling(vector<int>& startTime, vector<int>& endTime, vector<int>& profit) {
int n = profit.size();
vector<tuple<int, int, int>> jobs(n);
for (int i = 0; i < n; ++i) jobs[i] = {endTime[i], startTime[i], profit[i]};
sort(jobs.begin(), jobs.end());
vector<int> dp(n + 1);
for (int i = 0; i < n; ++i) {
auto [_, s, p] = jobs[i];
int j = upper_bound(jobs.begin(), jobs.begin() + i, s, [&](int x, auto& job) -> bool { return x < get<0>(job); }) - jobs.begin();
dp[i + 1] = max(dp[i], dp[j] + p);
}
return dp[n];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| func jobScheduling(startTime []int, endTime []int, profit []int) int {
n := len(profit)
type tuple struct{ s, e, p int }
jobs := make([]tuple, n)
for i, p := range profit {
jobs[i] = tuple{startTime[i], endTime[i], p}
}
sort.Slice(jobs, func(i, j int) bool { return jobs[i].e < jobs[j].e })
dp := make([]int, n+1)
for i, job := range jobs {
j := sort.Search(i, func(k int) bool { return jobs[k].e > job.s })
dp[i+1] = max(dp[i], dp[j]+job.p)
}
return dp[n]
}
|
Solution 3#
1
2
3
4
5
6
7
8
9
10
11
| class Solution:
def jobScheduling(
self, startTime: List[int], endTime: List[int], profit: List[int]
) -> int:
jobs = sorted(zip(endTime, startTime, profit))
n = len(profit)
dp = [0] * (n + 1)
for i, (_, s, p) in enumerate(jobs):
j = bisect_right(jobs, s, hi=i, key=lambda x: x[0])
dp[i + 1] = max(dp[i], dp[j] + p)
return dp[n]
|