Description#
Given an integer array nums
and an integer k
, find three non-overlapping subarrays of length k
with maximum sum and return them.
Return the result as a list of indices representing the starting position of each interval (0-indexed). If there are multiple answers, return the lexicographically smallest one.
Example 1:
Input: nums = [1,2,1,2,6,7,5,1], k = 2
Output: [0,3,5]
Explanation: Subarrays [1, 2], [2, 6], [7, 5] correspond to the starting indices [0, 3, 5].
We could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographically larger.
Example 2:
Input: nums = [1,2,1,2,1,2,1,2,1], k = 2
Output: [0,2,4]
Constraints:
1 <= nums.length <= 2 * 104
1 <= nums[i] < 216
1 <= k <= floor(nums.length / 3)
Solutions#
Solution 1: Sliding Window#
We use a sliding window to enumerate the position of the third subarray, while maintaining the maximum sum and its position of the first two non-overlapping subarrays.
The time complexity is $O(n)$, where $n$ is the length of the array $nums$. The space complexity is $O(1)$.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
| class Solution:
def maxSumOfThreeSubarrays(self, nums: List[int], k: int) -> List[int]:
s = s1 = s2 = s3 = 0
mx1 = mx12 = 0
idx1, idx12 = 0, ()
ans = []
for i in range(k * 2, len(nums)):
s1 += nums[i - k * 2]
s2 += nums[i - k]
s3 += nums[i]
if i >= k * 3 - 1:
if s1 > mx1:
mx1 = s1
idx1 = i - k * 3 + 1
if mx1 + s2 > mx12:
mx12 = mx1 + s2
idx12 = (idx1, i - k * 2 + 1)
if mx12 + s3 > s:
s = mx12 + s3
ans = [*idx12, i - k + 1]
s1 -= nums[i - k * 3 + 1]
s2 -= nums[i - k * 2 + 1]
s3 -= nums[i - k + 1]
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
| class Solution {
public int[] maxSumOfThreeSubarrays(int[] nums, int k) {
int[] ans = new int[3];
int s = 0, s1 = 0, s2 = 0, s3 = 0;
int mx1 = 0, mx12 = 0;
int idx1 = 0, idx121 = 0, idx122 = 0;
for (int i = k * 2; i < nums.length; ++i) {
s1 += nums[i - k * 2];
s2 += nums[i - k];
s3 += nums[i];
if (i >= k * 3 - 1) {
if (s1 > mx1) {
mx1 = s1;
idx1 = i - k * 3 + 1;
}
if (mx1 + s2 > mx12) {
mx12 = mx1 + s2;
idx121 = idx1;
idx122 = i - k * 2 + 1;
}
if (mx12 + s3 > s) {
s = mx12 + s3;
ans = new int[] {idx121, idx122, i - k + 1};
}
s1 -= nums[i - k * 3 + 1];
s2 -= nums[i - k * 2 + 1];
s3 -= nums[i - k + 1];
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
| class Solution {
public:
vector<int> maxSumOfThreeSubarrays(vector<int>& nums, int k) {
vector<int> ans(3);
int s = 0, s1 = 0, s2 = 0, s3 = 0;
int mx1 = 0, mx12 = 0;
int idx1 = 0, idx121 = 0, idx122 = 0;
for (int i = k * 2; i < nums.size(); ++i) {
s1 += nums[i - k * 2];
s2 += nums[i - k];
s3 += nums[i];
if (i >= k * 3 - 1) {
if (s1 > mx1) {
mx1 = s1;
idx1 = i - k * 3 + 1;
}
if (mx1 + s2 > mx12) {
mx12 = mx1 + s2;
idx121 = idx1;
idx122 = i - k * 2 + 1;
}
if (mx12 + s3 > s) {
s = mx12 + s3;
ans = {idx121, idx122, i - k + 1};
}
s1 -= nums[i - k * 3 + 1];
s2 -= nums[i - k * 2 + 1];
s3 -= nums[i - k + 1];
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
| func maxSumOfThreeSubarrays(nums []int, k int) []int {
ans := make([]int, 3)
s, s1, s2, s3 := 0, 0, 0, 0
mx1, mx12 := 0, 0
idx1, idx121, idx122 := 0, 0, 0
for i := k * 2; i < len(nums); i++ {
s1 += nums[i-k*2]
s2 += nums[i-k]
s3 += nums[i]
if i >= k*3-1 {
if s1 > mx1 {
mx1 = s1
idx1 = i - k*3 + 1
}
if mx1+s2 > mx12 {
mx12 = mx1 + s2
idx121 = idx1
idx122 = i - k*2 + 1
}
if mx12+s3 > s {
s = mx12 + s3
ans = []int{idx121, idx122, i - k + 1}
}
s1 -= nums[i-k*3+1]
s2 -= nums[i-k*2+1]
s3 -= nums[i-k+1]
}
}
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
| function maxSumOfThreeSubarrays(nums: number[], k: number): number[] {
const n: number = nums.length;
const s: number[] = Array(n + 1).fill(0);
for (let i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
const pre: number[][] = Array(n)
.fill([])
.map(() => new Array(2).fill(0));
const suf: number[][] = Array(n)
.fill([])
.map(() => new Array(2).fill(0));
for (let i = 0, t = 0, idx = 0; i < n - k + 1; ++i) {
const cur: number = s[i + k] - s[i];
if (cur > t) {
pre[i + k - 1] = [cur, i];
t = cur;
idx = i;
} else {
pre[i + k - 1] = [t, idx];
}
}
for (let i = n - k, t = 0, idx = 0; i >= 0; --i) {
const cur: number = s[i + k] - s[i];
if (cur >= t) {
suf[i] = [cur, i];
t = cur;
idx = i;
} else {
suf[i] = [t, idx];
}
}
let ans: number[] = [];
for (let i = k, t = 0; i < n - 2 * k + 1; ++i) {
const cur: number = s[i + k] - s[i] + pre[i - 1][0] + suf[i + k][0];
if (cur > t) {
ans = [pre[i - 1][1], i, suf[i + k][1]];
t = cur;
}
}
return ans;
}
|
Solution 2: Preprocessing Prefix and Suffix + Enumerating Middle Subarray#
We can preprocess to get the prefix sum array $s$ of the array $nums$, where $s[i] = \sum_{j=0}^{i-1} nums[j]$. Then for any $i$, $j$, $s[j] - s[i]$ is the sum of the subarray $[i, j)$.
Next, we use dynamic programming to maintain two arrays $pre$ and $suf$ of length $n$, where $pre[i]$ represents the maximum sum and its starting position of the subarray of length $k$ within the range $[0, i]$, and $suf[i]$ represents the maximum sum and its starting position of the subarray of length $k$ within the range $[i, n)$.
Then, we enumerate the starting position $i$ of the middle subarray. The sum of the three subarrays is $pre[i-1][0] + suf[i+k][0] + (s[i+k] - s[i])$, where $pre[i-1][0]$ represents the maximum sum of the subarray of length $k$ within the range $[0, i-1]$, $suf[i+k][0]$ represents the maximum sum of the subarray of length $k$ within the range $[i+k, n)$, and $(s[i+k] - s[i])$ represents the sum of the subarray of length $k$ within the range $[i, i+k)$. We find the starting positions of the three subarrays corresponding to the maximum sum.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $nums$.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
| class Solution:
def maxSumOfThreeSubarrays(self, nums: List[int], k: int) -> List[int]:
n = len(nums)
s = list(accumulate(nums, initial=0))
pre = [[] for _ in range(n)]
suf = [[] for _ in range(n)]
t = idx = 0
for i in range(n - k + 1):
if (cur := s[i + k] - s[i]) > t:
pre[i + k - 1] = [cur, i]
t, idx = pre[i + k - 1]
else:
pre[i + k - 1] = [t, idx]
t = idx = 0
for i in range(n - k, -1, -1):
if (cur := s[i + k] - s[i]) >= t:
suf[i] = [cur, i]
t, idx = suf[i]
else:
suf[i] = [t, idx]
t = 0
ans = []
for i in range(k, n - 2 * k + 1):
if (cur := s[i + k] - s[i] + pre[i - 1][0] + suf[i + k][0]) > t:
ans = [pre[i - 1][1], i, suf[i + k][1]]
t = cur
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
| class Solution {
public int[] maxSumOfThreeSubarrays(int[] nums, int k) {
int n = nums.length;
int[] s = new int[n + 1];
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
int[][] pre = new int[n][0];
int[][] suf = new int[n][0];
for (int i = 0, t = 0, idx = 0; i < n - k + 1; ++i) {
int cur = s[i + k] - s[i];
if (cur > t) {
pre[i + k - 1] = new int[] {cur, i};
t = cur;
idx = i;
} else {
pre[i + k - 1] = new int[] {t, idx};
}
}
for (int i = n - k, t = 0, idx = 0; i >= 0; --i) {
int cur = s[i + k] - s[i];
if (cur >= t) {
suf[i] = new int[] {cur, i};
t = cur;
idx = i;
} else {
suf[i] = new int[] {t, idx};
}
}
int[] ans = new int[0];
for (int i = k, t = 0; i < n - 2 * k + 1; ++i) {
int cur = s[i + k] - s[i] + pre[i - 1][0] + suf[i + k][0];
if (cur > t) {
ans = new int[] {pre[i - 1][1], i, suf[i + k][1]};
t = cur;
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
| class Solution {
public:
vector<int> maxSumOfThreeSubarrays(vector<int>& nums, int k) {
int n = nums.size();
vector<int> s(n + 1, 0);
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
vector<vector<int>> pre(n, vector<int>(2, 0));
vector<vector<int>> suf(n, vector<int>(2, 0));
for (int i = 0, t = 0, idx = 0; i < n - k + 1; ++i) {
int cur = s[i + k] - s[i];
if (cur > t) {
pre[i + k - 1] = {cur, i};
t = cur;
idx = i;
} else {
pre[i + k - 1] = {t, idx};
}
}
for (int i = n - k, t = 0, idx = 0; i >= 0; --i) {
int cur = s[i + k] - s[i];
if (cur >= t) {
suf[i] = {cur, i};
t = cur;
idx = i;
} else {
suf[i] = {t, idx};
}
}
vector<int> ans;
for (int i = k, t = 0; i < n - 2 * k + 1; ++i) {
int cur = s[i + k] - s[i] + pre[i - 1][0] + suf[i + k][0];
if (cur > t) {
ans = {pre[i - 1][1], i, suf[i + k][1]};
t = cur;
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
| func maxSumOfThreeSubarrays(nums []int, k int) (ans []int) {
n := len(nums)
s := make([]int, n+1)
for i := 0; i < n; i++ {
s[i+1] = s[i] + nums[i]
}
pre := make([][]int, n)
suf := make([][]int, n)
for i, t, idx := 0, 0, 0; i < n-k+1; i++ {
cur := s[i+k] - s[i]
if cur > t {
pre[i+k-1] = []int{cur, i}
t, idx = cur, i
} else {
pre[i+k-1] = []int{t, idx}
}
}
for i, t, idx := n-k, 0, 0; i >= 0; i-- {
cur := s[i+k] - s[i]
if cur >= t {
suf[i] = []int{cur, i}
t, idx = cur, i
} else {
suf[i] = []int{t, idx}
}
}
for i, t := k, 0; i < n-2*k+1; i++ {
cur := s[i+k] - s[i] + pre[i-1][0] + suf[i+k][0]
if cur > t {
ans = []int{pre[i-1][1], i, suf[i+k][1]}
t = cur
}
}
return
}
|