Description#
Given two sorted arrays nums1
and nums2
of size m
and n
respectively, return the median of the two sorted arrays.
The overall run time complexity should be O(log (m+n))
.
Example 1:
Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.
Example 2:
Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Constraints:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
Solutions#
Solution 1: Divide and Conquer#
The problem requires the time complexity of the algorithm to be $O(\log (m + n))$, so we cannot directly traverse the two arrays, but need to use the binary search method.
If $m + n$ is odd, then the median is the $\left\lfloor\frac{m + n + 1}{2}\right\rfloor$-th number; if $m + n$ is even, then the median is the average of the $\left\lfloor\frac{m + n + 1}{2}\right\rfloor$-th and the $\left\lfloor\frac{m + n + 2}{2}\right\rfloor$-th numbers. In fact, we can unify it as the average of the $\left\lfloor\frac{m + n + 1}{2}\right\rfloor$-th and the $\left\lfloor\frac{m + n + 2}{2}\right\rfloor$-th numbers.
Therefore, we can design a function $f(i, j, k)$, which represents the $k$-th smallest number in the interval $[i, m)$ of array $nums1$ and the interval $[j, n)$ of array $nums2$. The median is the average of $f(0, 0, \left\lfloor\frac{m + n + 1}{2}\right\rfloor)$ and $f(0, 0, \left\lfloor\frac{m + n + 2}{2}\right\rfloor)$.
The implementation idea of the function $f(i, j, k)$ is as follows:
- If $i \geq m$, it means that the interval $[i, m)$ of array $nums1$ is empty, so directly return $nums2[j + k - 1]$;
- If $j \geq n$, it means that the interval $[j, n)$ of array $nums2$ is empty, so directly return $nums1[i + k - 1]$;
- If $k = 1$, it means to find the first number, so just return the minimum of $nums1[i]$ and $nums2[j]$;
- Otherwise, we find the $\left\lfloor\frac{k}{2}\right\rfloor$-th number in the two arrays, denoted as $x$ and $y$. (Note, if a certain array does not have the $\left\lfloor\frac{k}{2}\right\rfloor$-th number, then we regard the $\left\lfloor\frac{k}{2}\right\rfloor$-th number as $+\infty$.) Compare the size of $x$ and $y$:
- If $x \leq y$, it means that the $\left\lfloor\frac{k}{2}\right\rfloor$-th number of array $nums1$ cannot be the $k$-th smallest number, so we can exclude the interval $[i, i + \left\lfloor\frac{k}{2}\right\rfloor)$ of array $nums1$, and recursively call $f(i + \left\lfloor\frac{k}{2}\right\rfloor, j, k - \left\lfloor\frac{k}{2}\right\rfloor)$.
- If $x > y$, it means that the $\left\lfloor\frac{k}{2}\right\rfloor$-th number of array $nums2$ cannot be the $k$-th smallest number, so we can exclude the interval $[j, j + \left\lfloor\frac{k}{2}\right\rfloor)$ of array $nums2$, and recursively call $f(i, j + \left\lfloor\frac{k}{2}\right\rfloor, k - \left\lfloor\frac{k}{2}\right\rfloor)$.
The time complexity is $O(\log(m + n))$, and the space complexity is $O(\log(m + n))$. Here, $m$ and $n$ are the lengths of arrays $nums1$ and $nums2$ respectively.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
def f(i: int, j: int, k: int) -> int:
if i >= m:
return nums2[j + k - 1]
if j >= n:
return nums1[i + k - 1]
if k == 1:
return min(nums1[i], nums2[j])
p = k // 2
x = nums1[i + p - 1] if i + p - 1 < m else inf
y = nums2[j + p - 1] if j + p - 1 < n else inf
return f(i + p, j, k - p) if x < y else f(i, j + p, k - p)
m, n = len(nums1), len(nums2)
a = f(0, 0, (m + n + 1) // 2)
b = f(0, 0, (m + n + 2) // 2)
return (a + b) / 2
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
| class Solution {
private int m;
private int n;
private int[] nums1;
private int[] nums2;
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
m = nums1.length;
n = nums2.length;
this.nums1 = nums1;
this.nums2 = nums2;
int a = f(0, 0, (m + n + 1) / 2);
int b = f(0, 0, (m + n + 2) / 2);
return (a + b) / 2.0;
}
private int f(int i, int j, int k) {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return Math.min(nums1[i], nums2[j]);
}
int p = k / 2;
int x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
int y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
| class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int m = nums1.size(), n = nums2.size();
function<int(int, int, int)> f = [&](int i, int j, int k) {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return min(nums1[i], nums2[j]);
}
int p = k / 2;
int x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
int y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
};
int a = f(0, 0, (m + n + 1) / 2);
int b = f(0, 0, (m + n + 2) / 2);
return (a + b) / 2.0;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
| func findMedianSortedArrays(nums1 []int, nums2 []int) float64 {
m, n := len(nums1), len(nums2)
var f func(i, j, k int) int
f = func(i, j, k int) int {
if i >= m {
return nums2[j+k-1]
}
if j >= n {
return nums1[i+k-1]
}
if k == 1 {
return min(nums1[i], nums2[j])
}
p := k / 2
x, y := 1<<30, 1<<30
if ni := i + p - 1; ni < m {
x = nums1[ni]
}
if nj := j + p - 1; nj < n {
y = nums2[nj]
}
if x < y {
return f(i+p, j, k-p)
}
return f(i, j+p, k-p)
}
a, b := f(0, 0, (m+n+1)/2), f(0, 0, (m+n+2)/2)
return float64(a+b) / 2.0
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
| function findMedianSortedArrays(nums1: number[], nums2: number[]): number {
const m = nums1.length;
const n = nums2.length;
const f = (i: number, j: number, k: number): number => {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return Math.min(nums1[i], nums2[j]);
}
const p = Math.floor(k / 2);
const x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
const y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
};
const a = f(0, 0, Math.floor((m + n + 1) / 2));
const b = f(0, 0, Math.floor((m + n + 2) / 2));
return (a + b) / 2;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
| /**
* @param {number[]} nums1
* @param {number[]} nums2
* @return {number}
*/
var findMedianSortedArrays = function (nums1, nums2) {
const m = nums1.length;
const n = nums2.length;
const f = (i, j, k) => {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return Math.min(nums1[i], nums2[j]);
}
const p = Math.floor(k / 2);
const x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
const y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
};
const a = f(0, 0, Math.floor((m + n + 1) / 2));
const b = f(0, 0, Math.floor((m + n + 2) / 2));
return (a + b) / 2;
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
| public class Solution {
private int m;
private int n;
private int[] nums1;
private int[] nums2;
public double FindMedianSortedArrays(int[] nums1, int[] nums2) {
m = nums1.Length;
n = nums2.Length;
this.nums1 = nums1;
this.nums2 = nums2;
int a = f(0, 0, (m + n + 1) / 2);
int b = f(0, 0, (m + n + 2) / 2);
return (a + b) / 2.0;
}
private int f(int i, int j, int k) {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return Math.Min(nums1[i], nums2[j]);
}
int p = k / 2;
int x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
int y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| class Solution {
/**
* @param int[] $nums1
* @param int[] $nums2
* @return float
*/
function findMedianSortedArrays($nums1, $nums2) {
$arr = array_merge($nums1, $nums2);
sort($arr);
$cnt_arr = count($arr);
if ($cnt_arr % 2) {
return $arr[$cnt_arr / 2];
} else {
return ($arr[intdiv($cnt_arr, 2) - 1] + $arr[intdiv($cnt_arr, 2)]) / 2;
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| import std/[algorithm, sequtils]
proc medianOfTwoSortedArrays(nums1: seq[int], nums2: seq[int]): float =
var
fullList: seq[int] = concat(nums1, nums2)
value: int = fullList.len div 2
fullList.sort()
if fullList.len mod 2 == 0:
result = (fullList[value - 1] + fullList[value]) / 2
else:
result = fullList[value].toFloat()
# Driver Code
# var
# arrA: seq[int] = @[1, 2]
# arrB: seq[int] = @[3, 4, 5]
# echo medianOfTwoSortedArrays(arrA, arrB)
|