Description#
There is a simple directed graph with n
nodes labeled from 0
to n - 1
. The graph would form a tree if its edges were bi-directional.
You are given an integer n
and a 2D integer array edges
, where edges[i] = [ui, vi]
represents a directed edge going from node ui
to node vi
.
An edge reversal changes the direction of an edge, i.e., a directed edge going from node ui
to node vi
becomes a directed edge going from node vi
to node ui
.
For every node i
in the range [0, n - 1]
, your task is to independently calculate the minimum number of edge reversals required so it is possible to reach any other node starting from node i
through a sequence of directed edges.
Return an integer array answer
, where answer[i]
is the minimum number of edge reversals required so it is possible to reach any other node starting from node i
through a sequence of directed edges.
Example 1:
Input: n = 4, edges = [[2,0],[2,1],[1,3]]
Output: [1,1,0,2]
Explanation: The image above shows the graph formed by the edges.
For node 0: after reversing the edge [2,0], it is possible to reach any other node starting from node 0.
So, answer[0] = 1.
For node 1: after reversing the edge [2,1], it is possible to reach any other node starting from node 1.
So, answer[1] = 1.
For node 2: it is already possible to reach any other node starting from node 2.
So, answer[2] = 0.
For node 3: after reversing the edges [1,3] and [2,1], it is possible to reach any other node starting from node 3.
So, answer[3] = 2.
Example 2:
Input: n = 3, edges = [[1,2],[2,0]]
Output: [2,0,1]
Explanation: The image above shows the graph formed by the edges.
For node 0: after reversing the edges [2,0] and [1,2], it is possible to reach any other node starting from node 0.
So, answer[0] = 2.
For node 1: it is already possible to reach any other node starting from node 1.
So, answer[1] = 0.
For node 2: after reversing the edge [1, 2], it is possible to reach any other node starting from node 2.
So, answer[2] = 1.
Constraints:
2 <= n <= 105
edges.length == n - 1
edges[i].length == 2
0 <= ui == edges[i][0] < n
0 <= vi == edges[i][1] < n
ui != vi
- The input is generated such that if the edges were bi-directional, the graph would be a tree.
Solutions#
Solution 1#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
| class Solution:
def minEdgeReversals(self, n: int, edges: List[List[int]]) -> List[int]:
ans = [0] * n
g = [[] for _ in range(n)]
for x, y in edges:
g[x].append((y, 1))
g[y].append((x, -1))
def dfs(i: int, fa: int):
for j, k in g[i]:
if j != fa:
ans[0] += int(k < 0)
dfs(j, i)
dfs(0, -1)
def dfs2(i: int, fa: int):
for j, k in g[i]:
if j != fa:
ans[j] = ans[i] + k
dfs2(j, i)
dfs2(0, -1)
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
| class Solution {
private List<int[]>[] g;
private int[] ans;
public int[] minEdgeReversals(int n, int[][] edges) {
ans = new int[n];
g = new List[n];
Arrays.setAll(g, i -> new ArrayList<>());
for (var e : edges) {
int x = e[0], y = e[1];
g[x].add(new int[] {y, 1});
g[y].add(new int[] {x, -1});
}
dfs(0, -1);
dfs2(0, -1);
return ans;
}
private void dfs(int i, int fa) {
for (var ne : g[i]) {
int j = ne[0], k = ne[1];
if (j != fa) {
ans[0] += k < 0 ? 1 : 0;
dfs(j, i);
}
}
}
private void dfs2(int i, int fa) {
for (var ne : g[i]) {
int j = ne[0], k = ne[1];
if (j != fa) {
ans[j] = ans[i] + k;
dfs2(j, i);
}
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
| class Solution {
public:
vector<int> minEdgeReversals(int n, vector<vector<int>>& edges) {
vector<pair<int, int>> g[n];
vector<int> ans(n);
for (auto& e : edges) {
int x = e[0], y = e[1];
g[x].emplace_back(y, 1);
g[y].emplace_back(x, -1);
}
function<void(int, int)> dfs = [&](int i, int fa) {
for (auto& [j, k] : g[i]) {
if (j != fa) {
ans[0] += k < 0;
dfs(j, i);
}
}
};
function<void(int, int)> dfs2 = [&](int i, int fa) {
for (auto& [j, k] : g[i]) {
if (j != fa) {
ans[j] = ans[i] + k;
dfs2(j, i);
}
}
};
dfs(0, -1);
dfs2(0, -1);
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
| func minEdgeReversals(n int, edges [][]int) []int {
g := make([][][2]int, n)
for _, e := range edges {
x, y := e[0], e[1]
g[x] = append(g[x], [2]int{y, 1})
g[y] = append(g[y], [2]int{x, -1})
}
ans := make([]int, n)
var dfs func(int, int)
var dfs2 func(int, int)
dfs = func(i, fa int) {
for _, ne := range g[i] {
j, k := ne[0], ne[1]
if j != fa {
if k < 0 {
ans[0]++
}
dfs(j, i)
}
}
}
dfs2 = func(i, fa int) {
for _, ne := range g[i] {
j, k := ne[0], ne[1]
if j != fa {
ans[j] = ans[i] + k
dfs2(j, i)
}
}
}
dfs(0, -1)
dfs2(0, -1)
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
| function minEdgeReversals(n: number, edges: number[][]): number[] {
const g: number[][][] = Array.from({ length: n }, () => []);
for (const [x, y] of edges) {
g[x].push([y, 1]);
g[y].push([x, -1]);
}
const ans: number[] = Array(n).fill(0);
const dfs = (i: number, fa: number) => {
for (const [j, k] of g[i]) {
if (j !== fa) {
ans[0] += k < 0 ? 1 : 0;
dfs(j, i);
}
}
};
const dfs2 = (i: number, fa: number) => {
for (const [j, k] of g[i]) {
if (j !== fa) {
ans[j] = ans[i] + k;
dfs2(j, i);
}
}
};
dfs(0, -1);
dfs2(0, -1);
return ans;
}
|