Description#
You are playing a game with integers. You start with the integer 1
and you want to reach the integer target
.
In one move, you can either:
- Increment the current integer by one (i.e.,
x = x + 1
). - Double the current integer (i.e.,
x = 2 * x
).
You can use the increment operation any number of times, however, you can only use the double operation at most maxDoubles
times.
Given the two integers target
and maxDoubles
, return the minimum number of moves needed to reach target
starting with 1
.
Example 1:
Input: target = 5, maxDoubles = 0
Output: 4
Explanation: Keep incrementing by 1 until you reach target.
Example 2:
Input: target = 19, maxDoubles = 2
Output: 7
Explanation: Initially, x = 1
Increment 3 times so x = 4
Double once so x = 8
Increment once so x = 9
Double again so x = 18
Increment once so x = 19
Example 3:
Input: target = 10, maxDoubles = 4
Output: 4
Explanation: Initially, x = 1
Increment once so x = 2
Double once so x = 4
Increment once so x = 5
Double again so x = 10
Constraints:
1 <= target <= 109
0 <= maxDoubles <= 100
Solutions#
Solution 1: Backtracking + Greedy#
Let’s start by backtracking from the final state. Assuming the final state is $target$, we can get the previous state of $target$ as $target - 1$ or $target / 2$, depending on the parity of $target$ and the value of $maxDoubles$.
If $target=1$, no operation is needed, and we can return $0$ directly.
If $maxDoubles=0$, we can only use the increment operation, so we need $target-1$ operations.
If $target$ is even and $maxDoubles>0$, we can use the doubling operation, so we need $1$ operation, and then recursively solve $target/2$ and $maxDoubles-1$.
If $target$ is odd, we can only use the increment operation, so we need $1$ operation, and then recursively solve $target-1$ and $maxDoubles$.
The time complexity is $O(\min(\log target, maxDoubles))$, and the space complexity is $O(\min(\log target, maxDoubles))$.
We can also change the above process to an iterative way to avoid the space overhead of recursion.
1
2
3
4
5
6
7
8
9
| class Solution:
def minMoves(self, target: int, maxDoubles: int) -> int:
if target == 1:
return 0
if maxDoubles == 0:
return target - 1
if target % 2 == 0 and maxDoubles:
return 1 + self.minMoves(target >> 1, maxDoubles - 1)
return 1 + self.minMoves(target - 1, maxDoubles)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| class Solution {
public int minMoves(int target, int maxDoubles) {
if (target == 1) {
return 0;
}
if (maxDoubles == 0) {
return target - 1;
}
if (target % 2 == 0 && maxDoubles > 0) {
return 1 + minMoves(target >> 1, maxDoubles - 1);
}
return 1 + minMoves(target - 1, maxDoubles);
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
| class Solution {
public:
int minMoves(int target, int maxDoubles) {
if (target == 1) {
return 0;
}
if (maxDoubles == 0) {
return target - 1;
}
if (target % 2 == 0 && maxDoubles > 0) {
return 1 + minMoves(target >> 1, maxDoubles - 1);
}
return 1 + minMoves(target - 1, maxDoubles);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
| func minMoves(target int, maxDoubles int) int {
if target == 1 {
return 0
}
if maxDoubles == 0 {
return target - 1
}
if target%2 == 0 && maxDoubles > 0 {
return 1 + minMoves(target>>1, maxDoubles-1)
}
return 1 + minMoves(target-1, maxDoubles)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
| function minMoves(target: number, maxDoubles: number): number {
if (target === 1) {
return 0;
}
if (maxDoubles === 0) {
return target - 1;
}
if (target % 2 === 0 && maxDoubles) {
return 1 + minMoves(target >> 1, maxDoubles - 1);
}
return 1 + minMoves(target - 1, maxDoubles);
}
|
Solution 2#
1
2
3
4
5
6
7
8
9
10
11
12
| class Solution:
def minMoves(self, target: int, maxDoubles: int) -> int:
ans = 0
while maxDoubles and target > 1:
ans += 1
if target % 2 == 1:
target -= 1
else:
maxDoubles -= 1
target >>= 1
ans += target - 1
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| class Solution {
public int minMoves(int target, int maxDoubles) {
int ans = 0;
while (maxDoubles > 0 && target > 1) {
++ans;
if (target % 2 == 1) {
--target;
} else {
--maxDoubles;
target >>= 1;
}
}
ans += target - 1;
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| class Solution {
public:
int minMoves(int target, int maxDoubles) {
int ans = 0;
while (maxDoubles > 0 && target > 1) {
++ans;
if (target % 2 == 1) {
--target;
} else {
--maxDoubles;
target >>= 1;
}
}
ans += target - 1;
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
| func minMoves(target int, maxDoubles int) (ans int) {
for maxDoubles > 0 && target > 1 {
ans++
if target&1 == 1 {
target--
} else {
maxDoubles--
target >>= 1
}
}
ans += target - 1
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| function minMoves(target: number, maxDoubles: number): number {
let ans = 0;
while (maxDoubles && target > 1) {
++ans;
if (target & 1) {
--target;
} else {
--maxDoubles;
target >>= 1;
}
}
ans += target - 1;
return ans;
}
|