Description#
You are given a 0-indexed integer array nums
of even length and there is also an empty array arr
. Alice and Bob decided to play a game where in every round Alice and Bob will do one move. The rules of the game are as follows:
- Every round, first Alice will remove the minimum element from
nums
, and then Bob does the same. - Now, first Bob will append the removed element in the array
arr
, and then Alice does the same. - The game continues until
nums
becomes empty.
Return the resulting array arr
.
Example 1:
Input: nums = [5,4,2,3]
Output: [3,2,5,4]
Explanation: In round one, first Alice removes 2 and then Bob removes 3. Then in arr firstly Bob appends 3 and then Alice appends 2. So arr = [3,2].
At the begining of round two, nums = [5,4]. Now, first Alice removes 4 and then Bob removes 5. Then both append in arr which becomes [3,2,5,4].
Example 2:
Input: nums = [2,5]
Output: [5,2]
Explanation: In round one, first Alice removes 2 and then Bob removes 5. Then in arr firstly Bob appends and then Alice appends. So arr = [5,2].
Constraints:
1 <= nums.length <= 100
1 <= nums[i] <= 100
nums.length % 2 == 0
Solutions#
Solution 1: Simulation + Priority Queue (Min Heap)#
We can put the elements in the array $nums$ into a min heap one by one, and each time take out two elements $a$ and $b$ from the min heap, then put $b$ and $a$ into the answer array in turn, until the min heap is empty.
Time complexity is $O(n \times \log n)$, and space complexity is $O(n)$. Where $n$ is the length of the array $nums$.
1
2
3
4
5
6
7
8
9
| class Solution:
def numberGame(self, nums: List[int]) -> List[int]:
heapify(nums)
ans = []
while nums:
a, b = heappop(nums), heappop(nums)
ans.append(b)
ans.append(a)
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| class Solution {
public int[] numberGame(int[] nums) {
PriorityQueue<Integer> pq = new PriorityQueue<>();
for (int x : nums) {
pq.offer(x);
}
int[] ans = new int[nums.length];
int i = 0;
while (!pq.isEmpty()) {
int a = pq.poll();
ans[i++] = pq.poll();
ans[i++] = a;
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| class Solution {
public:
vector<int> numberGame(vector<int>& nums) {
priority_queue<int, vector<int>, greater<int>> pq;
for (int x : nums) {
pq.push(x);
}
vector<int> ans;
while (pq.size()) {
int a = pq.top();
pq.pop();
int b = pq.top();
pq.pop();
ans.push_back(b);
ans.push_back(a);
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
| func numberGame(nums []int) (ans []int) {
pq := &hp{nums}
heap.Init(pq)
for pq.Len() > 0 {
a := heap.Pop(pq).(int)
b := heap.Pop(pq).(int)
ans = append(ans, b)
ans = append(ans, a)
}
return
}
type hp struct{ sort.IntSlice }
func (h *hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] }
func (h *hp) Pop() interface{} {
old := h.IntSlice
n := len(old)
x := old[n-1]
h.IntSlice = old[0 : n-1]
return x
}
func (h *hp) Push(x interface{}) {
h.IntSlice = append(h.IntSlice, x.(int))
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
| function numberGame(nums: number[]): number[] {
const pq = new MinPriorityQueue();
for (const x of nums) {
pq.enqueue(x);
}
const ans: number[] = [];
while (pq.size()) {
const a = pq.dequeue().element;
const b = pq.dequeue().element;
ans.push(b, a);
}
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
| use std::collections::BinaryHeap;
use std::cmp::Reverse;
impl Solution {
pub fn number_game(nums: Vec<i32>) -> Vec<i32> {
let mut pq = BinaryHeap::new();
for &x in &nums {
pq.push(Reverse(x));
}
let mut ans = Vec::new();
while let Some(Reverse(a)) = pq.pop() {
if let Some(Reverse(b)) = pq.pop() {
ans.push(b);
ans.push(a);
}
}
ans
}
}
|
Solution 2: Sorting + Swapping#
We can sort the array $nums$, and then swap the positions of every two adjacent elements in sequence to get the answer array.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Where $n$ is the length of the array $nums$.
1
2
3
4
5
6
| class Solution:
def numberGame(self, nums: List[int]) -> List[int]:
nums.sort()
for i in range(0, len(nums), 2):
nums[i], nums[i + 1] = nums[i + 1], nums[i]
return nums
|
1
2
3
4
5
6
7
8
9
10
11
| class Solution {
public int[] numberGame(int[] nums) {
Arrays.sort(nums);
for (int i = 0; i < nums.length; i += 2) {
int t = nums[i];
nums[i] = nums[i + 1];
nums[i + 1] = t;
}
return nums;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
| class Solution {
public:
vector<int> numberGame(vector<int>& nums) {
sort(nums.begin(), nums.end());
int n = nums.size();
for (int i = 0; i < n; i += 2) {
swap(nums[i], nums[i + 1]);
}
return nums;
}
};
|
1
2
3
4
5
6
7
| func numberGame(nums []int) []int {
sort.Ints(nums)
for i := 0; i < len(nums); i += 2 {
nums[i], nums[i+1] = nums[i+1], nums[i]
}
return nums
}
|
1
2
3
4
5
6
7
| function numberGame(nums: number[]): number[] {
nums.sort((a, b) => a - b);
for (let i = 0; i < nums.length; i += 2) {
[nums[i], nums[i + 1]] = [nums[i + 1], nums[i]];
}
return nums;
}
|
1
2
3
4
5
6
7
8
9
10
| impl Solution {
pub fn number_game(nums: Vec<i32>) -> Vec<i32> {
let mut nums = nums;
nums.sort_unstable();
for i in (0..nums.len()).step_by(2) {
nums.swap(i, i + 1);
}
nums
}
}
|