Description#
You are given an integer array nums
. In one operation, you can replace any element in nums
with any integer.
nums
is considered continuous if both of the following conditions are fulfilled:
- All elements in
nums
are unique. - The difference between the maximum element and the minimum element in
nums
equals nums.length - 1
.
For example, nums = [4, 2, 5, 3]
is continuous, but nums = [1, 2, 3, 5, 6]
is not continuous.
Return the minimum number of operations to make nums
continuous.
Example 1:
Input: nums = [4,2,5,3]
Output: 0
Explanation: nums is already continuous.
Example 2:
Input: nums = [1,2,3,5,6]
Output: 1
Explanation: One possible solution is to change the last element to 4.
The resulting array is [1,2,3,5,4], which is continuous.
Example 3:
Input: nums = [1,10,100,1000]
Output: 3
Explanation: One possible solution is to:
- Change the second element to 2.
- Change the third element to 3.
- Change the fourth element to 4.
The resulting array is [1,2,3,4], which is continuous.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
Solutions#
Solution 1: Sorting + Deduplication + Binary Search#
First, we sort the array and remove duplicates.
Then, we traverse the array, enumerating the current element $nums[i]$ as the minimum value of the consecutive array. We use binary search to find the first position $j$ that is greater than $nums[i] + n - 1$. Then, $j-i$ is the length of the consecutive array when the current element is the minimum value. We update the answer, i.e., $ans = \min(ans, n - (j - i))$.
Finally, we return $ans$.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Here, $n$ is the length of the array.
1
2
3
4
5
6
7
8
| class Solution:
def minOperations(self, nums: List[int]) -> int:
ans = n = len(nums)
nums = sorted(set(nums))
for i, v in enumerate(nums):
j = bisect_right(nums, v + n - 1)
ans = min(ans, n - (j - i))
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
| class Solution {
public int minOperations(int[] nums) {
int n = nums.length;
Arrays.sort(nums);
int m = 1;
for (int i = 1; i < n; ++i) {
if (nums[i] != nums[i - 1]) {
nums[m++] = nums[i];
}
}
int ans = n;
for (int i = 0; i < m; ++i) {
int j = search(nums, nums[i] + n - 1, i, m);
ans = Math.min(ans, n - (j - i));
}
return ans;
}
private int search(int[] nums, int x, int left, int right) {
while (left < right) {
int mid = (left + right) >> 1;
if (nums[mid] > x) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| class Solution {
public:
int minOperations(vector<int>& nums) {
sort(nums.begin(), nums.end());
int m = unique(nums.begin(), nums.end()) - nums.begin();
int n = nums.size();
int ans = n;
for (int i = 0; i < m; ++i) {
int j = upper_bound(nums.begin() + i, nums.begin() + m, nums[i] + n - 1) - nums.begin();
ans = min(ans, n - (j - i));
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
| func minOperations(nums []int) int {
sort.Ints(nums)
n := len(nums)
m := 1
for i := 1; i < n; i++ {
if nums[i] != nums[i-1] {
nums[m] = nums[i]
m++
}
}
ans := n
for i := 0; i < m; i++ {
j := sort.Search(m, func(k int) bool { return nums[k] > nums[i]+n-1 })
ans = min(ans, n-(j-i))
}
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
| use std::collections::BTreeSet;
impl Solution {
#[allow(dead_code)]
pub fn min_operations(nums: Vec<i32>) -> i32 {
let n = nums.len();
let nums = nums.into_iter().collect::<BTreeSet<i32>>();
let m = nums.len();
let nums = nums.into_iter().collect::<Vec<i32>>();
let mut ans = n;
for i in 0..m {
let j = match nums.binary_search(&(nums[i] + (n as i32))) {
Ok(idx) => idx,
Err(idx) => idx,
};
ans = std::cmp::min(ans, n - (j - i));
}
ans as i32
}
}
|
Solution 2: Sorting + Deduplication + Two Pointers#
Similar to Solution 1, we first sort the array and remove duplicates.
Then, we traverse the array, enumerating the current element $nums[i]$ as the minimum value of the consecutive array. We use two pointers to find the first position $j$ that is greater than $nums[i] + n - 1$. Then, $j-i$ is the length of the consecutive array when the current element is the minimum value. We update the answer, i.e., $ans = \min(ans, n - (j - i))$.
Finally, we return $ans$.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Here, $n$ is the length of the array.
1
2
3
4
5
6
7
8
9
10
| class Solution:
def minOperations(self, nums: List[int]) -> int:
n = len(nums)
nums = sorted(set(nums))
ans, j = n, 0
for i, v in enumerate(nums):
while j < len(nums) and nums[j] - v <= n - 1:
j += 1
ans = min(ans, n - (j - i))
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| class Solution {
public int minOperations(int[] nums) {
int n = nums.length;
Arrays.sort(nums);
int m = 1;
for (int i = 1; i < n; ++i) {
if (nums[i] != nums[i - 1]) {
nums[m++] = nums[i];
}
}
int ans = n;
for (int i = 0, j = 0; i < m; ++i) {
while (j < m && nums[j] - nums[i] <= n - 1) {
++j;
}
ans = Math.min(ans, n - (j - i));
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| class Solution {
public:
int minOperations(vector<int>& nums) {
sort(nums.begin(), nums.end());
int m = unique(nums.begin(), nums.end()) - nums.begin();
int n = nums.size();
int ans = n;
for (int i = 0, j = 0; i < m; ++i) {
while (j < m && nums[j] - nums[i] <= n - 1) {
++j;
}
ans = min(ans, n - (j - i));
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| func minOperations(nums []int) int {
sort.Ints(nums)
n := len(nums)
m := 1
for i := 1; i < n; i++ {
if nums[i] != nums[i-1] {
nums[m] = nums[i]
m++
}
}
ans := n
for i, j := 0, 0; i < m; i++ {
for j < m && nums[j]-nums[i] <= n-1 {
j++
}
ans = min(ans, n-(j-i))
}
return ans
}
|