1658. Minimum Operations to Reduce X to Zero

Description

You are given an integer array nums and an integer x. In one operation, you can either remove the leftmost or the rightmost element from the array nums and subtract its value from x. Note that this modifies the array for future operations.

Return the minimum number of operations to reduce x to exactly 0 if it is possible, otherwise, return -1.

 

Example 1:

Input: nums = [1,1,4,2,3], x = 5
Output: 2
Explanation: The optimal solution is to remove the last two elements to reduce x to zero.

Example 2:

Input: nums = [5,6,7,8,9], x = 4
Output: -1

Example 3:

Input: nums = [3,2,20,1,1,3], x = 10
Output: 5
Explanation: The optimal solution is to remove the last three elements and the first two elements (5 operations in total) to reduce x to zero.

 

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 104
  • 1 <= x <= 109

Solutions

Solution 1

Python Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution:
    def minOperations(self, nums: List[int], x: int) -> int:
        x = sum(nums) - x
        vis = {0: -1}
        ans = inf
        s, n = 0, len(nums)
        for i, v in enumerate(nums):
            s += v
            if s not in vis:
                vis[s] = i
            if s - x in vis:
                j = vis[s - x]
                ans = min(ans, n - (i - j))
        return -1 if ans == inf else ans

Java Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
    public int minOperations(int[] nums, int x) {
        x = -x;
        for (int v : nums) {
            x += v;
        }
        Map<Integer, Integer> vis = new HashMap<>();
        vis.put(0, -1);
        int n = nums.length;
        int ans = 1 << 30;
        for (int i = 0, s = 0; i < n; ++i) {
            s += nums[i];
            vis.putIfAbsent(s, i);
            if (vis.containsKey(s - x)) {
                int j = vis.get(s - x);
                ans = Math.min(ans, n - (i - j));
            }
        }
        return ans == 1 << 30 ? -1 : ans;
    }
}

C++ Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
public:
    int minOperations(vector<int>& nums, int x) {
        x = accumulate(nums.begin(), nums.end(), 0) - x;
        unordered_map<int, int> vis{{0, -1}};
        int n = nums.size();
        int ans = 1 << 30;
        for (int i = 0, s = 0; i < n; ++i) {
            s += nums[i];
            if (!vis.count(s)) {
                vis[s] = i;
            }
            if (vis.count(s - x)) {
                int j = vis[s - x];
                ans = min(ans, n - (i - j));
            }
        }
        return ans == 1 << 30 ? -1 : ans;
    }
};

Go Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
func minOperations(nums []int, x int) int {
	x = -x
	for _, v := range nums {
		x += v
	}
	vis := map[int]int{0: -1}
	ans := 1 << 30
	s, n := 0, len(nums)
	for i, v := range nums {
		s += v
		if _, ok := vis[s]; !ok {
			vis[s] = i
		}
		if j, ok := vis[s-x]; ok {
			ans = min(ans, n-(i-j))
		}
	}
	if ans == 1<<30 {
		return -1
	}
	return ans
}

TypeScript Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
function minOperations(nums: number[], x: number): number {
    x = nums.reduce((a, b) => a + b, 0) - x;
    const vis = new Map();
    vis.set(0, -1);
    const n = nums.length;
    let ans = 1 << 30;
    for (let i = 0, s = 0; i < n; ++i) {
        s += nums[i];
        if (!vis.has(s)) {
            vis.set(s, i);
        }
        if (vis.has(s - x)) {
            const j = vis.get(s - x);
            ans = Math.min(ans, n - (i - j));
        }
    }
    return ans == 1 << 30 ? -1 : ans;
}

Rust Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
impl Solution {
    pub fn min_operations(nums: Vec<i32>, x: i32) -> i32 {
        let n = nums.len();
        let target = nums.iter().sum::<i32>() - x;
        if target < 0 {
            return -1;
        }
        let mut ans = i32::MAX;
        let mut sum = 0;
        let mut i = 0;
        for j in 0..n {
            sum += nums[j];
            while sum > target {
                sum -= nums[i];
                i += 1;
            }
            if sum == target {
                ans = ans.min((n - 1 - (j - i)) as i32);
            }
        }
        if ans == i32::MAX {
            return -1;
        }
        ans
    }
}

C Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#define min(a, b) (((a) < (b)) ? (a) : (b))

int minOperations(int* nums, int numsSize, int x) {
    int target = -x;
    for (int i = 0; i < numsSize; i++) {
        target += nums[i];
    }
    if (target < 0) {
        return -1;
    }
    int ans = INT_MAX;
    int sum = 0;
    int i = 0;
    for (int j = 0; j < numsSize; j++) {
        sum += nums[j];
        while (sum > target) {
            sum -= nums[i++];
        }
        if (sum == target) {
            ans = min(ans, numsSize - 1 - (j - i));
        }
    }
    if (ans == INT_MAX) {
        return -1;
    }
    return ans;
}

Solution 2

Python Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution:
    def minOperations(self, nums: List[int], x: int) -> int:
        x = sum(nums) - x
        ans = inf
        n = len(nums)
        s = j = 0
        for i, v in enumerate(nums):
            s += v
            while j <= i and s > x:
                s -= nums[j]
                j += 1
            if s == x:
                ans = min(ans, n - (i - j + 1))
        return -1 if ans == inf else ans

Java Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
    public int minOperations(int[] nums, int x) {
        x = -x;
        for (int v : nums) {
            x += v;
        }
        int n = nums.length;
        int ans = 1 << 30;
        for (int i = 0, j = 0, s = 0; i < n; ++i) {
            s += nums[i];
            while (j <= i && s > x) {
                s -= nums[j++];
            }
            if (s == x) {
                ans = Math.min(ans, n - (i - j + 1));
            }
        }
        return ans == 1 << 30 ? -1 : ans;
    }
}

C++ Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution {
public:
    int minOperations(vector<int>& nums, int x) {
        x = accumulate(nums.begin(), nums.end(), 0) - x;
        int n = nums.size();
        int ans = 1 << 30;
        for (int i = 0, j = 0, s = 0; i < n; ++i) {
            s += nums[i];
            while (j <= i && s > x) {
                s -= nums[j++];
            }
            if (s == x) {
                ans = min(ans, n - (i - j + 1));
            }
        }
        return ans == 1 << 30 ? -1 : ans;
    }
};

Go Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
func minOperations(nums []int, x int) int {
	x = -x
	for _, v := range nums {
		x += v
	}
	ans := 1 << 30
	s, n := 0, len(nums)
	j := 0
	for i, v := range nums {
		s += v
		for j <= i && s > x {
			s -= nums[j]
			j++
		}
		if s == x {
			ans = min(ans, n-(i-j+1))
		}
	}
	if ans == 1<<30 {
		return -1
	}
	return ans
}

TypeScript Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
function minOperations(nums: number[], x: number): number {
    x = nums.reduce((a, b) => a + b, 0) - x;
    const n = nums.length;
    let ans = 1 << 30;
    for (let i = 0, j = 0, s = 0; i < n; ++i) {
        s += nums[i];
        while (j <= i && s > x) {
            s -= nums[j++];
        }
        if (s == x) {
            ans = Math.min(ans, n - (i - j + 1));
        }
    }
    return ans == 1 << 30 ? -1 : ans;
}