1889. Minimum Space Wasted From Packaging

Description

You have n packages that you are trying to place in boxes, one package in each box. There are m suppliers that each produce boxes of different sizes (with infinite supply). A package can be placed in a box if the size of the package is less than or equal to the size of the box.

The package sizes are given as an integer array packages, where packages[i] is the size of the ith package. The suppliers are given as a 2D integer array boxes, where boxes[j] is an array of box sizes that the jth supplier produces.

You want to choose a single supplier and use boxes from them such that the total wasted space is minimized. For each package in a box, we define the space wasted to be size of the box - size of the package. The total wasted space is the sum of the space wasted in all the boxes.

  • For example, if you have to fit packages with sizes [2,3,5] and the supplier offers boxes of sizes [4,8], you can fit the packages of size-2 and size-3 into two boxes of size-4 and the package with size-5 into a box of size-8. This would result in a waste of (4-2) + (4-3) + (8-5) = 6.

Return the minimum total wasted space by choosing the box supplier optimally, or -1 if it is impossible to fit all the packages inside boxes. Since the answer may be large, return it modulo 109 + 7.

 

Example 1:

Input: packages = [2,3,5], boxes = [[4,8],[2,8]]
Output: 6
Explanation: It is optimal to choose the first supplier, using two size-4 boxes and one size-8 box.
The total waste is (4-2) + (4-3) + (8-5) = 6.

Example 2:

Input: packages = [2,3,5], boxes = [[1,4],[2,3],[3,4]]
Output: -1
Explanation: There is no box that the package of size 5 can fit in.

Example 3:

Input: packages = [3,5,8,10,11,12], boxes = [[12],[11,9],[10,5,14]]
Output: 9
Explanation: It is optimal to choose the third supplier, using two size-5 boxes, two size-10 boxes, and two size-14 boxes.
The total waste is (5-3) + (5-5) + (10-8) + (10-10) + (14-11) + (14-12) = 9.

 

Constraints:

  • n == packages.length
  • m == boxes.length
  • 1 <= n <= 105
  • 1 <= m <= 105
  • 1 <= packages[i] <= 105
  • 1 <= boxes[j].length <= 105
  • 1 <= boxes[j][k] <= 105
  • sum(boxes[j].length) <= 105
  • The elements in boxes[j] are distinct.

Solutions

Solution 1

Python Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution:
    def minWastedSpace(self, packages: List[int], boxes: List[List[int]]) -> int:
        mod = 10**9 + 7
        ans = inf
        packages.sort()
        for box in boxes:
            box.sort()
            if packages[-1] > box[-1]:
                continue
            s = i = 0
            for b in box:
                j = bisect_right(packages, b, lo=i)
                s += (j - i) * b
                i = j
            ans = min(ans, s)
        if ans == inf:
            return -1
        return (ans - sum(packages)) % mod

Java Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
class Solution {
    public int minWastedSpace(int[] packages, int[][] boxes) {
        int n = packages.length;
        final long inf = 1L << 62;
        Arrays.sort(packages);
        long ans = inf;
        for (var box : boxes) {
            Arrays.sort(box);
            if (packages[n - 1] > box[box.length - 1]) {
                continue;
            }
            long s = 0;
            int i = 0;
            for (int b : box) {
                int j = search(packages, b, i);
                s += 1L * (j - i) * b;
                i = j;
            }
            ans = Math.min(ans, s);
        }
        if (ans == inf) {
            return -1;
        }
        long s = 0;
        for (int p : packages) {
            s += p;
        }
        final int mod = (int) 1e9 + 7;
        return (int) ((ans - s) % mod);
    }

    private int search(int[] nums, int x, int l) {
        int r = nums.length;
        while (l < r) {
            int mid = (l + r) >> 1;
            if (nums[mid] > x) {
                r = mid;
            } else {
                l = mid + 1;
            }
        }
        return l;
    }
}

C++ Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public:
    int minWastedSpace(vector<int>& packages, vector<vector<int>>& boxes) {
        int n = packages.size(), m = boxes.size();
        sort(packages.begin(), packages.end());
        const int mod = 1e9 + 7;
        const long long inf = 1LL << 62;
        long long ans = inf;
        for (auto& box : boxes) {
            sort(box.begin(), box.end());
            if (packages.back() > box.back()) {
                continue;
            }
            int i = 0;
            long long s = 0;
            for (auto& b : box) {
                int j = upper_bound(packages.begin() + i, packages.end(), b) - packages.begin();
                s += 1LL * (j - i) * b;
                i = j;
            }
            ans = min(ans, s);
        }
        return ans == inf ? -1 : (ans - accumulate(packages.begin(), packages.end(), 0LL)) % mod;
    }
};

Go Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
func minWastedSpace(packages []int, boxes [][]int) int {
	n := len(packages)
	inf := 1 << 62
	sort.Ints(packages)
	ans := inf
	for _, box := range boxes {
		sort.Ints(box)
		if packages[n-1] > box[len(box)-1] {
			continue
		}
		s, i := 0, 0
		for _, b := range box {
			j := sort.SearchInts(packages[i:], b+1) + i
			s += (j - i) * b
			i = j
		}
		ans = min(ans, s)
	}
	if ans == inf {
		return -1
	}
	s := 0
	for _, p := range packages {
		s += p
	}
	const mod = 1e9 + 7
	return (ans - s) % mod
}

TypeScript Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
function minWastedSpace(packages: number[], boxes: number[][]): number {
    const n = packages.length;
    const inf = Infinity;
    packages.sort((a, b) => a - b);
    let ans = inf;
    for (const box of boxes) {
        box.sort((a, b) => a - b);
        if (packages[n - 1] > box[box.length - 1]) {
            continue;
        }
        let s = 0;
        let i = 0;
        for (const b of box) {
            const j = search(packages, b, i);
            s += (j - i) * b;
            i = j;
        }
        ans = Math.min(ans, s);
    }
    if (ans === inf) {
        return -1;
    }
    const s = packages.reduce((a, b) => a + b, 0);
    return (ans - s) % 1000000007;
}

function search(nums: number[], x: number, l: number): number {
    let r = nums.length;
    while (l < r) {
        const mid = (l + r) >> 1;
        if (nums[mid] > x) {
            r = mid;
        } else {
            l = mid + 1;
        }
    }
    return l;
}