1151. Minimum Swaps to Group All 1’s Together

Description

Given a binary array data, return the minimum number of swaps required to group all 1’s present in the array together in any place in the array.

 

Example 1:

Input: data = [1,0,1,0,1]
Output: 1
Explanation: There are 3 ways to group all 1's together:
[1,1,1,0,0] using 1 swap.
[0,1,1,1,0] using 2 swaps.
[0,0,1,1,1] using 1 swap.
The minimum is 1.

Example 2:

Input: data = [0,0,0,1,0]
Output: 0
Explanation: Since there is only one 1 in the array, no swaps are needed.

Example 3:

Input: data = [1,0,1,0,1,0,0,1,1,0,1]
Output: 3
Explanation: One possible solution that uses 3 swaps is [0,0,0,0,0,1,1,1,1,1,1].

 

Constraints:

  • 1 <= data.length <= 105
  • data[i] is either 0 or 1.

Solutions

Solution 1: Sliding Window

First, we count the number of $1$s in the array, denoted as $k$. Then we use a sliding window of size $k$, moving the right boundary of the window from left to right, and count the number of $1$s in the window, denoted as $t$. Each time we move the window, we update the value of $t$. Finally, when the right boundary of the window moves to the end of the array, the number of $1$s in the window is the maximum, denoted as $mx$. The final answer is $k - mx$.

The time complexity is $O(n)$, and the space complexity is $O(1)$. Here, $n$ is the length of the array.

Python Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
class Solution:
    def minSwaps(self, data: List[int]) -> int:
        k = data.count(1)
        t = sum(data[:k])
        mx = t
        for i in range(k, len(data)):
            t += data[i]
            t -= data[i - k]
            mx = max(mx, t)
        return k - mx

Java Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
class Solution {
    public int minSwaps(int[] data) {
        int k = 0;
        for (int v : data) {
            k += v;
        }
        int t = 0;
        for (int i = 0; i < k; ++i) {
            t += data[i];
        }
        int mx = t;
        for (int i = k; i < data.length; ++i) {
            t += data[i];
            t -= data[i - k];
            mx = Math.max(mx, t);
        }
        return k - mx;
    }
}

C++ Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
public:
    int minSwaps(vector<int>& data) {
        int k = 0;
        for (int& v : data) {
            k += v;
        }
        int t = 0;
        for (int i = 0; i < k; ++i) {
            t += data[i];
        }
        int mx = t;
        for (int i = k; i < data.size(); ++i) {
            t += data[i];
            t -= data[i - k];
            mx = max(mx, t);
        }
        return k - mx;
    }
};

Go Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
func minSwaps(data []int) int {
	k := 0
	for _, v := range data {
		k += v
	}
	t := 0
	for _, v := range data[:k] {
		t += v
	}
	mx := t
	for i := k; i < len(data); i++ {
		t += data[i]
		t -= data[i-k]
		mx = max(mx, t)
	}
	return k - mx
}

TypeScript Code
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
function minSwaps(data: number[]): number {
    const k = data.reduce((acc, cur) => acc + cur, 0);
    let t = data.slice(0, k).reduce((acc, cur) => acc + cur, 0);
    let mx = t;
    for (let i = k; i < data.length; ++i) {
        t += data[i] - data[i - k];
        mx = Math.max(mx, t);
    }
    return k - mx;
}